

Operation Manual

Goodrive20-UL Series Inverter

SHENZHEN INVT ELECTRIC CO., LTD.

Contents

1 Safety Precautions	1
1.1 Safety definition	1
1.2 Warning symbols	1
1.3 Safety guide	2
2 Product Overview	4
2.1 Quick start-up	
2.2 Product specification	
2.3 Name plate	7
2.4 Type designation key	8
2.5 Rated specifications	
2.6 Structure diagram	
3 Installation Guide	
3.1 Mechanical installation	
3.2 Standard wiring	
3.3 Layout protection	
4 Keypad Operation Procedure	
4.1 Keypad introduction	
4.2 Keypad displaying	
4.3 Keypad operation	
5 Function Parameters	
6 Fault Tracking	
6.1 Maintenance intervals	
6.2 Fault solution	
7 Communication Protocol	
7.1 Brief instruction to Modbus protocol	
7.2 Application of the inverter	
7.3 RTU command code and communication data illustration	
Appendix A Technical Data	
A.1 Ratings	
A.2 Marking	
A.3 EMC regulations	
Appendix B Dimension Drawings	
B.1 External keypad (optional) structure	
B.2 Inverter chart	
Appendix C Peripheral Options and Parts	
C.1 Peripheral wiring	
C.2 Power supply	
C.3 Cables	
C.4 Fuse C.5 Reactors	
C.6 Filter	
C.7 Braking components	
Appendix D Further Information	

1 Safety Precautions

Please read this manual carefully and follow all safety precautions before moving, installing, operating and servicing the inverter. If ignored, physical injury or death may occur, or damage may occur to the devices.

If any physical injury or death or damage to the devices occurs for ignoring to the safety precautions in the manual, our company will not be responsible for any damages and we are not legally bound in any manner.

1.1 Safety definition

Danger:	Serious physical injury or even death may occur if not follow relevant
	requirements
Warning:	Physical injury or damage to the devices may occur if not follow relevant
	requirements
Note:	Physical hurt may occur if not follow relevant requirements
Qualified electricians:	People working on the device should take part in professional electrical
	and safety training, receive the certification and be familiar with all steps
	and requirements of installing, commissioning, operating and maintaining
	the device to avoid any emergency.

1.2 Warning symbols

Warnings caution you about conditions which can result in serious injury or death and/or damage to the equipment, and advice on how to avoid the danger. Following warning symbols are used in this manual:

Symbols	Name	Instruction	Abbreviation
A Danger	Danger	Serious physical injury or even death may occur if not follow the relative requirements	A
	Warning	Physical injury or damage to the devices may occur if not follow the relative requirements	
Do not	Electrostatic discharge	Damage to the PCBA board may occur if not follow the relative requirements	Â
Hot sides	Hot sides	Sides of the device may become hot. Do not touch.	
Note	Note	Physical hurt may occur if not follow the relative requirements	Note

1.3 Safet	y guide				
	 Only qualified electricians are allowed to operate on the inverter. Do not carry out any wiring and inspection or changing components when the power supply is applied. Ensure all input power supply is disconnected before wiring and checking and always wait for at least the time designated on the inverter or until the DC bus voltage is less than 36V. Below is the table of the waiting time: 				
	Inv	verter module	Minimum waiting time		
	1PH 220V	0.4–2.2kW	5 minutes		
	3PH 220V	3PH 220V 0.4–0.75kW 5 minutes			
	3PH 460V	3PH 460V 0.75-2.2kW 5 minutes			
⚠	 Do not refit the inverter unauthorized; otherwise fire, electric shock or other injury may occur. 				
	The base of the radiator may become hot during running. Do not touch to avoid hurt.				
		The electrical parts and components inside the inverter are electrostatic. Take measurements to avoid electrostatic discharge during relevant operation.			

1.3.1 Delivery and installation

1	 Please install the inverter on fire-retardant material and keep the inverter away
	from combustible materials.
	Connect the braking optional parts (braking resistors, braking units or feedback
	units) according to the wiring diagram.
•	Do not operate on the inverter if there is any damage or components loss to the
	inverter.
	• Do not touch the inverter with wet items or body, otherwise electric shock may
	occur.
	Solid-state motor overload protection is performed when the inverter runs at 150%
	of FLA.
	The inverter does not provide motor over-temperature protection.

Note:

- Select appropriate moving and installing tools to ensure a safe and normal running of the inverter and avoid physical injury or death. For physical safety, the erector should take some mechanical protective measurements, such as wearing exposure shoes and working uniforms.
- Ensure to avoid physical shock or vibration during delivery and installation.
- Do not carry the inverter by its cover. The cover may fall off.
- Install away from children and other public places.
- The inverter cannot meet the requirements of low voltage protection in IEC61800-5-1 if the altitude of the installation site is above 2000m.
- The leakage current of the inverter may be above 3.5mA during operation. Ground with proper techniques and ensure the grounding resistor is less than 10Ω. The conductivity of PE grounding conductor is the same as that of the phase conductor (with the same cross sectional area).

R, S and T are the input terminals of the power supply, while U, V and W are the motor terminals.
 Please connect the input power cables and motor cables with proper techniques; otherwise the damage to the inverter may occur.

1.3.2 Commissioning and running

	Disconnect all power supplies applied to the inverter before the terminal wiring and
	wait for at least the designated time after disconnecting the power supply.
	High voltage is present inside the inverter during running. Do not carry out any
	operation except for the keypad setting.
<u>/</u>	• The inverter may start up by itself when P01.21=1. Do not get close to the inverter
	and motor.
	The inverter can not be used as "Emergency-stop device".
	• The inverter can not be used to break the motor suddenly. A mechanical braking
	device should be provided.

Note:

- Do not switch on or off the input power supply of the inverter frequently.
- For inverters that have been stored for a long time, check and fix the capacitance and try to run it again before utilization (see Maintenance and Hardware Fault Diagnose).
- · Cover the front board before running, otherwise electric shock may occur.

1.3.3 Maintenance and replacement of components

A	 Only qualified electricians are allowed to perform the maintenance, inspection, and components replacement of the inverter. Disconnect all power supplies to the inverter before the terminal wiring. Wait for at least the time designated on the inverter after disconnection.
	Take measures to avoid screws, cables and other conductive matters to fall into the inverter during maintenance and component replacement.

Note:

- · Please select proper torque to tighten screws.
- Keep the inverter, parts and components away from combustible materials during maintenance and component replacement.
- Do not carry out any isolation and pressure test on the inverter and do not measure the control circuit
 of the inverter by megameter.

1.3.4 What to do after scrapping

\wedge	There are heavy metals in the inverter. Deal with it as industrial effluent.
Ŕ	 When the life cycle ends, the product should enter the recycling system. Dispose of it separately at an appropriate collection point instead of placing it in the normal waste stream.

2 Product Overview

2.1 Quick start-up

2.1.1 Unpacking inspection

Check as follows after receiving products:

1. Check whether the packing box is damaged or dampened. If yes, contact local dealers or INVT offices.

2. Check the model identifier on the exterior surface of the packing box is consistent with the purchased model. If no, contact local dealers or INVT offices.

Check whether the interior surface of packing box is abnormal, for example, in wet condition, or whether the enclosure of the inverter is damaged or cracked. If yes, contact local dealers or INVT offices.

Check whether the name plate of the inverter is consistent with the model identifier on the exterior surface of the packing box. If no, contact local dealers or INVT offices.

5. Check whether the accessories (including user's manual and control keypad) inside the packing box are complete. If not, please contact with local dealers or INVT offices.

2.1.2 Application confirmation

Check the machine before beginning to use the inverter:

1. Check the load type to verify that there is no overload of the inverter during work and check whether the power degree of the inverter needs to be modified.

2. Check that the actual current of the motor is less than the rated current of the inverter.

3. Check that the control accuracy of the load is the same of the inverter.

4. Check that the incoming supply voltage is correspondent to the rated voltage of the inverter.

2.1.3 Environment

Check as follows before the actual installation and usage:

Check that the ambient temperature of the inverter is below 40°C. If exceeds, derate 1% for every
additional 1°C. Additionally, the inverter can not be used if the ambient temperature is above 50°C.

Note: For the cabinet inverter, the ambient temperature means the air temperature inside the cabinet.

2. Check that the ambient temperature of the inverter in actual usage is above -10°C. If not, add heating facilities.

Note: For the cabinet inverter, the ambient temperature means the air temperature inside the cabinet.

3. Check that the altitude of the actual usage site is below 1000m. If exceeds, derate1% for every additional 100m.

Check that the humidity of the actual usage site is below 90% and condensation is not allowed. If not, add additional protection inverters.

Check that the actual usage site is away from direct sunlight and foreign objects can not enter the inverter. If not, add additional protective measures. Check that there is no conductive dust or flammable gas in the actual usage site. If not, add additional protection to inverters.

2.1.4 Installation confirmation

Check as follows after the installation:

1. Check that the load range of the input and output cables meet the need of actual load.

 Check that the accessories of the inverter are correctly and properly installed. The installation cables should meet the needs of every component (including reactors, input filters, output reactors, output filters, DC reactors, braking units and braking resistors).

3. Check that the inverter is installed on non-flammable materials and the calorific accessories (reactors and brake resistors) are away from flammable materials.

Check that all control cables and power cables are run separately and the routation complies with EMC requirement.

5. Check that all grounding systems are properly grounded according to the requirements of the inverter.

Check that the free space during installation is sufficient according to the instructions in user's manual.

7. Check that the installation conforms to the instructions in user's manual. The inverter must be installed in an upright position.

8. Check that the external connection terminals are tightly fastened and the torque is appropriate.

9. Check that there are no screws, cables and other conductive items left in the inverter. If not, get them out.

2.1.5 Basic commissioning

Complete the basic commissioning as follows before actual utilization:

1. Autotune. If possible, de-coupled from the motor load to start dynamic autotune. Or if not, static autotune is available.

2. Adjust the ACC/DEC time according to the actual running of the load.

3. Commission the device via jogging and check that the rotation direction is as required. If not, change the rotation direction by changing the wiring of motor.

4. Set all control parameters and then operate.

2.2 Product specification

Function		Specification
	Input voltage (V)	AC 1PH 200V–240V; AC 3PH 200V–240V; AC 3PH 380V–480V
Power input	Allowable Voltage Fluctuation	-15%-+10%
	Input current (A)	Refer to the rated value
	Input frequency (Hz)	50Hz or 60Hz Allowed range: 47–63Hz

Function		Specification	
	Output voltage (V)	0-input voltage	
	Output current (A)	Refer to the rated value	
Power	Output power (kW)	Refer to the rated value	
output	Output frequency	0-400Hz	
	(Hz)		
	Control mode	SVPWM, SVC	
	Adjustable-speed	Asynchronous motor 1: 100 (SVC)	
	ratio		
	Speed control	±0.2% (SVC)	
	accuracy	2012/0 (010)	
Technical	Speed fluctuation	±0.3% (SVC)	
control	Torque response	<20ms (SVC)	
feature	Torque control	10%	
	accuracy	1070	
	Starting torque	0. 5Hz/150% (SVC)	
		150% of rated current: 1 minute	
	Overload capability	180% of rated current: 10 seconds	
		200% of rated current: 1 second	
		Digital setting, analog setting, pulse frequency setting,	
	Frequency setting	multi-step speed running setting, simple PLC setting, PID	
	method	setting, MODBUS communication setting	
Running		Shift between the set combination and set channel.	
control	Auto-adjustment of	Keep a stable voltage automatically when the grid voltage	
feature	the voltage	transients	
		Provide comprehensive fault protection functions:	
	Fault protection	overcurrent, overvoltage, undervoltage, overheating, phase	
		loss and overload, etc.	
	Analog input	1 input (AI2): 0-10V/0-20mA; 1 input (AI3): -10-10V	
	Analog output	2 inputs (AO1, AO2): 0-10V/0-20mA	
	Digital input	4 common inputs, max. frequency: 1kHz;	
Peripheral	Digital Input	1 high speed input, max. frequency: 50kHz	
interface	Digital output	1 Y1 terminal output; 2 programmable relay outputs	
		2 programmable relay outputs	
	Relay output	RO1A NO, RO1B NC, RO1C common terminal	
	Relay output	RO2A NO, RO2B NC, RO2C common terminal	
		Contact capacity: 3A/AC250V	
	Mountable method	Wall and rail mountable	
Others	Temperature of the	-10–50°C, derate above 40°C	
	running environment		

Function	Specification
Protective degree	Note: 1. The inverter with plastic casing should be installed in metal distribution cabinet, which conforms to IP20 and of which the top conforms to IP3X. 2. Install device in pollution degree 2 environment
Cooling	Air-cooling
Braking unit	Embedded
EMI filter	Optional filter: meet the degree requirement of IEC61800-3 C2, IEC61800-3 C3
Safety	Meet the requirements of CE, UL and CUL
Overvoltage category	1PH&3PH 240V: Used in Canada only: "Transient surge suppression shall be installed on the line side of this equipment and shall be rated 240V (phase to ground), 240V (phase to phase), suitable for overvoltage category III, and shall provide protection for a rated impulse withstand voltage peak of 4kV" or equivalent. 3PH: Used in Canada only: "Transient surge suppression shall be installed on the line side of this equipment and shall be rated 480V (phase to ground), 480V (phase to phase), suitable for overvoltage category III, and shall provide protection for a rated impulse withstand voltage peak of 6kV" or equivalent.

2.3 Name plate

invt	_C€ℤ。@us
Model: GD20-2R2G-4-UL	LISTED E364851
Power(Output): 2.2kW	IND. CONT. EQ
Input: AC 3PH 380V-480V 1	5.8A 50/60Hz
Output: AC 3PH OV-Unput	5.5A 0Hz-400Hz
S/N:	Made in China
Shenzhen INV	T Electric Co., Ltd.

Figure 2-1 Name plate

2.4 Type designation key

The type designation contains information on the inverter. The user can find the type designation on the type designation label attached to the inverter or the simple name plate.

Figure 2-2 Product type

Key	No.	Detailed description	Detailed content		
Product abbreviation	(1)	Product abbreviation	Goodrive20		
			GD20 is short for Goodrive20		
Rated power	(2)	Power range + Load type	2R2— 2.2kW		
Rated power	2	Power range + Load type	G— Constant torque load		
	3		S2: AC 1PH 200V-240V		
Voltage degree		Voltage degree	2: AC 3PH 200V-240V		
			4: AC 3PH 380V-480V		
Certification mark	4	Used in America	Certified by UL and CUL		

2.5 Rated specifications

Model	Rated output power (kW)	Rated input current (A)	Rated output current (A)	
GD20-0R4G-S2-UL	0.4	6.5	2.5	
GD20-0R7G-S2-UL	0.75	9.3	4.2	
GD20-1R5G-S2-UL	1.5	15.7	7.5	
GD20-2R2G-S2-UL	2.2	20	10	
GD20-0R4G-2-UL	0.4	3.7	2.5	
GD20-0R7G-2-UL	0.75 5.0		4.2	
GD20-0R7G-4-UL	0.75	3.4	2.5	
GD20-1R5G-4-UL	1.5	5.0	4.2	
GD20-2R2G-4-UL	2.2	5.8	5.5	

2.6 Structure diagram

Below is the layout figure of the inverter (take the inverter of 0.75kW as the example).

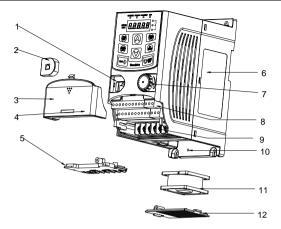


Figure 2-3 Product structure

Serial No.	Name	Illustration		
1	External keypad port	Connect the external keypad		
2	Port cover	Protect the external keypad port		
3	Cover	Protect the internal parts and components		
4	Hole for the sliding cover	Fix the sliding cover		
5	Trunking board	Protect the inner components and fix the cables of the main circuit		
6	Name plate	See Product Overview for detailed information		
7	Potentiometer knob	Refer to the Keypad Operation Procedure		
8	Control terminals	See Electric Installation for detailed information		
9	Main circuit terminals	See Electric Installation for detailed information		
10	Screw hole	Fix the fan cover and fan		
11	Cooling fan	See Maintenance and Hardware Fault Diagnose for detailed information		
12	Fan cover	Protect the fan		
Note: In above figure, the screws at 4 and 10 are provided with packaging and specific installation depends on the requirements of customers.				

3 Installation Guide

The chapter describes the mechanical installation and electric installation.

	Only qualified electricians are allowed to carry out what described in this chapter.
	Please operate as the instructions in Safety Precautions. Ignoring these may
	cause physical injury or death or damage to the devices.
	Ensure the power supply of the inverter is disconnected during the operation. Wait
	for at least the time designated after the disconnection if the power supply is
<u> 74 \</u>	applied.
	The installation and design of the inverter should be complied with the requirement
	of the local laws and regulations in the installation site. If the installation infringes
	the requirement, our company will exempt from any responsibility. Additionally, if
	users do not comply with the suggestion, some damage beyond the assured
	maintenance range may occur.

3.1 Mechanical installation

3.1.1 Installation environment

The installation environment is the safeguard for a full performance and long-term stable functions of the inverter. Check the installation environment as follows:

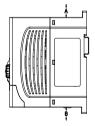
Environment	Conditions					
Installation site	Indoor					
Environment temperature	-10°C-+50°C, and the temperature changing rate is less than 0.5°C/minute. If the ambient temperature of the inverter is above 40°C, derate 1% for every additional 1°C. It is not recommended to use the inverter if the ambient temperature is above 50°C. In order to improve the reliability of the device, do not use the inverter if the ambient temperature changes frequently. Please provide cooling fan or air conditioner to control the internal ambient temperature below the required one if the inverter is used in a close space such as in the control cabinet. When the temperature is too low, if the inverter needs to restart to run after a long stop, it is necessary to provide an external heating device to increase the internal temperature, otherwise damage to the devices may occur.					
Humidity	RH≤90% No condensation is allowed.					
Storage temperature	-40°C-+70°C, and the temperature changing rate is less than 1°C/minute.					
Running	The installation site of the inverter should:					
environment keep away from the electromagnetic radiation source;						

Environment	Conditions					
condition	keep away from contaminative air, such as corrosive gas, oil mist and					
	flammable gas;					
	ensure foreign objects, such as metal power, dust, oil, water can not enter into					
	the inverter (do not install the inverter on the flammable materials such as					
	wood);					
	keep away from direct sunlight, oil mist, steam and vibration environment.					
A 14:44	Below 1000m					
Altitude If the altitude is above 1000m, derate 1% for every additional 100m.						
Vibration	≤ 5.8m/s ² (0.6g)					
Installation	The inverter should be installed on an upright position to ensure sufficient					
direction	cooling effect.					

Note:

- Goodrive20 series inverters should be installed in a clean and ventilated environment according to enclosure classification.
- · Cooling air must be clean, free from corrosive materials and electrically conductive dust.

3.1.2 Installation direction


The inverter may be installed in a cabinet.

The inverter needs be installed in the vertical position. Check the installation site according to the requirements below. Refer to chapter *Dimension Drawings* in the appendix for frame details.

3.1.3 Installation manner

The inverter can be installed in two different ways, depending on the frame size:

- a) Wall mounting (for all frame sizes)
- b) Rail mounting (for all frame sizes, but need optional installation bracket)

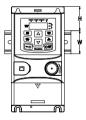


Figure 3-1 Wall mounting

Figure 3-2 Rail mounting

Note: The minimum space of A and B is 100mm. H is 36.6mm and W is 35.0mm.

3.2 Standard wiring

3.2.1 Connection diagram of main circuit

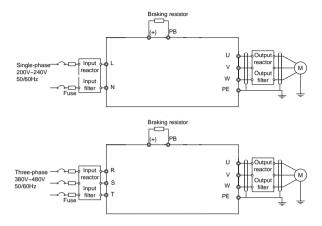
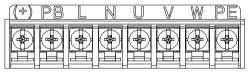



Figure 3-3 Connection diagram of main circuit

Note:

- The fuse, braking resistor, input reactor, input filter, output reactor, output filter are optional parts.
 Please refer to *Peripheral Optional Parts* for detailed information.
- Remove the yellow warning labels of PB, (+) and (-) on the terminals before connecting the braking resistor; otherwise, poor connection may occur.

3.2.2 Terminals figure of main circuit

	Terminal	Terminal name	Function						
I	L		1-phase	AC	input	terminals	which	are	generally
I	Ν	Power input of the main circuit	connected with the power supply.						
I	U	The investor output	3-phase	AC	output	terminals	which	are	generally
I	V	The inverter output	connecte	d with	the mo	otor.			

Terminal	Terminal name	Function
W		
PB, (+)	Braking resistor terminal	PB and (+) are connected to the external resistor.
PE	Grounding terminal	Each machine should be grounded.

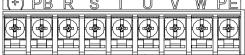


Figure 3-5 3PH terminals of main circuit

Terminal	Terminal name	Function					
R, S, T	Power input of the main circuit	3-phase AC input terminals which are generally					
R, 3, 1	Power input of the main circuit	connected with the power supply.					
	The investor output	3-phase AC output terminals which are generally					
U, V, W	The inverter output	connected with the motor.					
PB, (+)	Braking resistor terminal	PB and (+) are connected to the external resistor.					
PE	Grounding terminal	Each machine should be grounded.					

Note:

- Do not use asymmetrically motor cables. If there is a symmetrically grounding conductor in the motor cable in addition to the conductive shield, connect the grounding conductor to the grounding terminal at the inverter and motor ends.
- · Route the motor cable, input power cable and control cables separately.
- When selecting C3 input filters, connect the filters in parallel at the input side of the inverter.

3.2.3 Wiring of terminals in main circuit

- Connect the ground line of input power cable to the ground terminal of inverter (PE) directly, and connect 3PH input cable to R, S and T and fasten up.
- Connect the ground line of motor cable to the ground terminal of the inverter, and connect the 3PH motor cable to U, V, W and fasten up.
- 3. Connect the brake resistor which carries cables to the designated position.
- 4. Fasten up all the cables on the outside of the inverter if allowed.

3.2.4 Wiring diagram of control circuit

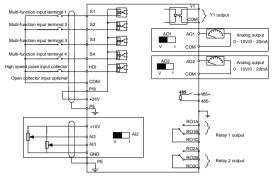


Figure 3-6 Wiring of control circuit

3.2.5 Terminals of control circuit

F	RO1A	F	RO1B		RO1C
	RO2A	1	RO2E	3	RO2C

Figure 3-7 Terminals of control circuit

Туре	Terminal name	Function description	Technical specifications		
Communication	485+	485	485 communication interface		
Communication	485-	communication	485 communication interface		
	S1		1. Internal impedance: 3.3kΩ		
	S2		2. 12-30V voltage input is available		
	S3	Digital input	 The terminal is the dual-direction input terminal Max. input frequency: 1kHz 		
	S4				
Digital input/output	HDI	High frequency input channel	Except for S1–S4, this terminal can be used as high frequency input channel. Max. inputfrequency: 50kHz Duty cycle: 30%–70%		
	PW	Digital power supply	To provide the external digital power supply Voltage range: 12–30V		

Туре	Terminal name	Function description	Technical specifications		
	Y1		Contact capacity: 50mA/30V		
	СОМ	Digital output	Common terminal of the open		
	COM		collector output		
			10V reference power supply		
		External 10V	Max. output current: 50mA		
	+10V	reference power	As the adjusting power supply of the		
	1100	supply	external potentiometer		
		Supply	Potentiometer resistance: 5kΩ		
			above		
	AI2		1. Input range: AI2 voltage and		
			current can be chosen:		
			0–10V/0–20mA; AI3: -10V–+10V.		
			Input impedance:voltage input:		
Analog		Analog input	20kΩ; current input: 500Ω.		
input/output	AI3		3.Voltage or current input can be		
			set by dip switch.		
			4. Resolution: the minimum Al2/Al3		
			is 10mV/20mV when 10V		
			corresponds to 60Hz.		
	GND	Analog reference ground	Analog reference ground		
	AO1		1. Output range: 0–10V or 0–20mA		
	AOT		2. The voltage or the current output		
		Analog output	is depended on the dip switch.		
	AO2		3. Deviation±1%, 25°C when full		
			range.		
	RO1A	Relay 1 NO			
	-	contact			
	RO1B	Relay 1 NC contact	RO1 relay output, RO1A NO, RO1B		
	RO1C	Relay 1 common	NC, RO1C common terminal		
Relay output		contact	RO2 relay output, RO2A NO, RO2B		
	RO2A	Relay 2 NO	NC, RO2C common terminal		
		contact	Contact capacity: 3A/AC250V		
	RO2B	Relay 2 NC contact			
	RO2C	Relay 2 common			
		contact			

3.2.6 Input/Output signal connection figure

Please use U-shaped contact tag to set NPN mode or PNP mode and the internal or external power

supply. The default setting is NPN internal mode.

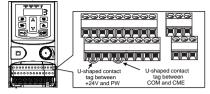


Figure 3-8 U-shaped contact tag

If the signal is from NPN transistor, please set the U-shaped contact tag between +24V and PW as below according to the used power supply.

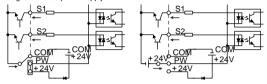


Figure 3-9 NPN modes

If the signal is from PNP transistor, please set the U-shaped contact tag as below according to the used power supply.

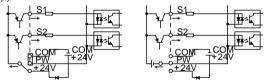


Figure 3-10 PNP modes

3.3 Layout protection

3.3.1 Protecting the inverter and input power cable in short-circuit situations

Protect the inverter and input power cable in short circuit situations and against thermal overload. Arrange the protection according to the following guide.

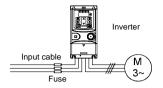


Figure 3-11 Fuse configuration

Note: Select the fuse as the manual indicated. The fuse will protect the input power cable from damage in short-circuit situations. It will protect the surrounding devices when the internal of the inverter is short circuited.

3.3.2 Protecting the motor and motor cables

The inverter protects the motor and motor cable in a short-circuit situation when the motor cable is dimensioned according to the rated current of the inverter. No additional protection devices are needed.

If the inverter is connected to multiple motors, a separate thermal overload switch or a circuit breaker must be used for protecting each cable and motor. These devices may require a separate fuse to cut off the short-circuit current.

3.3.3 Implementing a bypass connection

It is necessary to set power frequency and variable frequency conversion circuits for the assurance of continuous normal work of the inverter if faults occur in some significant situations.

In some special situations, for example, if it is only used in soft start, the inverter can be conversed into power frequency running after starting and some corresponding bypass should be added.

 Never connect the supply power to the inverter output terminals U, V and W.
 Power line voltage applied to the output can result in permanent damage to the inverter.

If frequent shifting is required, employ mechanically connected switches or contactors to ensure that the motor terminals are not connected to the AC power line and inverter output terminals simultaneously.

4 Keypad Operation Procedure

4.1 Keypad introduction

The keypad is used to control Goodrive20-UL series inverters, read the state data and adjust parameters.

Note: The external keypads are optional (including the external keypads with and without the function of parameter copying).

Serial No.	Name		Description
		RUN/TUNE	LED off means that the inverter is in the stopping state; LED blinking means the inverter is in the parameter autotune state; LED on means the inverter is in the running state.
1	1 State LED	FWD/REV	FED/REV LED LED off means the inverter is in the forward rotation state; LED on means the inverter is in the reverse rotation state
		LOCAL/REMOT	LED for keypad operation, terminals operation and remote communication control LED off means that the inverter is in the keypad operation state; LED blinking means the inverter is in the terminals operation state; LED on means the inverter is in the remote communication control state.

Serial	Name	Description						
No.				T	-			
		TRIP		LED on wh	LED for faults LED on when the inverter is in the fault state; LED off in normal state; LED blinking means the inverter			
		Mean the uni	Aean the unit displayed currently					
		0		Hz		Frequency u	ınit	
				RPM	F	Rotating speed	d unit	
2	Unit LED			A		Current un	it	
				%		Percentag	e	
		0		v		Voltage un	it	
		-	display display d output freque Corresp		Corresp	and alarm cod	Corresp	
		d word	onding word	d word	onding word	d word	onding word	
		8	0	.055	1	5	2	
	Code	- 3	3	on.	4	50	5	
3	displaying	8	6		7	8	8	
	zone	- 8	9	8	A	6	В	
		E.	С	8	d	E	E	
		۶	F	8	Н	E	I	
		Ľ	L	CI I	N	0	n	
		0	0	8	Р	r.	r	
		- 5	S	5	t	8	U	
		u	v	32		-	-	
		PRG ESC	Programming key		escape from e parameter q	the first leve uickly	el menu and	
		DATA ENT	Entry key	Enter the n Confirm pa	nenu step-by- irameters	step		
4	Buttons		UP key	Increase da	ata or functio	n code progre	ssively	
			DOWN key	Decrease of	data or functio	on code progre	essively	
		N SHIFT	Right-shift key	circularly in	stopping and	the displayin d running moc modifying dig	le.	

Serial No.	Name			Description
				parameter modification
			Run key	This key is used to operate on the inverter in key operation mode
		O RST RST	Stop/ Reset key	This key is used to stop in running state and it is limited by function code P07.04 This key is used to reset all control modes in the fault alarm state
			Quick key	The function of this key is confirmed by function code P07.02.
5	Keypad port	External keypad port. When the external keypad with the function of parameter copying is valid, the local keypad LED is off; When the external keypad without the function of parameter copying is valid, the local and external keypad LEDs are on. Note: Only the external keypad which has the function of parameters copy owns		
6	Analog potentio meter	the function of parameters copy, other keypads do not have. Al1, When the external common keypad (without the function of parameter copy) is valid, the difference between the local keypad Al1 and the external keypad Al1 is: when the external keypad Al1 is set to the Min. value, the local keypad Al1 will be valid and P17.19 will be the voltage of the local keypad Al1; otherwise, the external keypad Al1 will be valid and P17.19 will be the voltage of the external keypad Al1. Note: If the external keypad Al1 is frequency reference source, adjust the local potentiometer Al1 to 0V/0mA before starting the inverter.		

4.2 Keypad displaying

The keypad displaying state of Goodrive20-UL series inverters is divided into stopping state parameter, running state parameter, function code parameter editing state and fault alarm state and so on.

4.2.1 Displayed state of stopping parameter

When the inverter is in the stopping state, the keypad will display stopping parameters which is shown in figure 4-2.

In the stopping state, various kinds of parameters can be displayed. Select the parameters to be displayed or not by P07.07. See the instructions of P07.07 for the detailed definition of each bit.

In the stopping state, there are 14 stopping parameters can be selected to be displayed or not. They are: set frequency, bus voltage, input terminals state, output terminals state, PID given, PID feedback, torque set value, Al1, Al2, Al3, HDI, PLC and the current stage of multi-step speeds, pulse counting value, length value. P07.07 can select the parameter to be displayed or not by bit and SIMIFT can shift the parameters from left to right, QUICK/JOG (P07.02=2) can shift the parameters from right to left.

4.1.2 Displayed state of running parameters

After the inverter receives valid running commands, the inverter will enter into the running state and the keypad will display the running parameters. RUN/TUNE LED on the keypad is on, while the FWD/REV is determined by the current running direction which is shown as figure 4-2.

In the running state, there are 24 parameters can be selected to be displayed or not. They are: running frequency, set frequency, bus voltage, output voltage, output torque, PID given, PID feedback, input terminals state, output terminals state, output engines and the current stage of multi-step speeds, pulse counting value, Al1, Al2, Al3, HDI, percentage of motor overload, percentage of inverter overload, ramp given value, linear speed, AC input current. P07.05 and P07.06 can select the parameter to be displayed or not by bit and **JAHET** can shift the parameters from left to right, **QUICK/JOG** (P07.02–2) can shift the parameters from right to left.

4.1.3 Displayed state of fault

If the inverter detects the fault signal, it will enter into the fault pre-alarm displaying state. The keypad will display the fault code by flicking. The **TRIP** LED on the keypad is on, and the fault reset can be operated by the **STOP/RST** on the keypad, control terminals or communication commands.

4.1.4 Displayed state of function codes editing

In the state of stopping, running or fault, press <u>PRG/ESC</u> to enter into the editing state (if there is a password, see P07.00). The editing state is displayed on two classes of menu, and the order is: function code group/function code number--function code parameter, press <u>DATA/ENT</u> into the displayed state of function parameter. On this state, press <u>DATA/ENT</u> to save the parameters or press <u>PRG/ESC</u> to escape.

Figure 4-2 Displayed state

4.3 Keypad operation

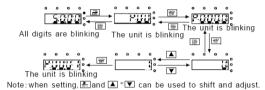
Operate the inverter via operation panel. See the detailed structure description of function codes in the brief diagram of function codes.

4.3.1 How to modify the function codes of the inverter

The inverter has three levels menu, which are:

- 1. Group number of function code (first-level menu)
- 2. Tab of function code (second-level menu)
- 3. Set value of function code (third-level menu)

Goodrive20-UL inverters

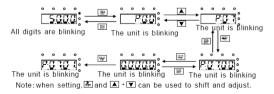

Remarks: Press both the PRG/ESC and the DATA/ENT can return to the second-level menu from the third-level menu. The difference is: pressing DATA/ENT will save the set parameters into the control panel, and then return to the second-level menu with shifting to the next function code automatically; while pressing PRG/ESC will directly return to the second-level menu without saving the parameters, and keep staying at the current function code.

Under the third-level menu, if the parameter has no flickering bit, it means the function code cannot be modified. The possible reasons could be:

 This function code is not modifiable parameter, such as actual detected parameter, operation records and so on;

2) This function code is not modifiable in running state, but modifiable in stop state.

Example: Set function code P00.01 from 0 to 1.


Figure 4-3 Sketch map of modifying parameters

4.3.2 How to set the password of the inverter

Goodrive20-UL series inverters provide password protection function to users. Set P7.00 to gain the password and the password protection becomes valid instantly after quitting from the function code editing state. Press <u>PRG/ESC</u> again to the function code editing state, "0.0.0.0.0" will be displayed. Unless using the correct password, the operators cannot enter it.

Set P7.00 to 0 to cancel password protection function.

The password protection becomes effective instantly after retreating from the function code editing state. Press <u>PRG/ESC</u> again to the function code editing state, "0.0.0.0.0" will be displayed. Unless using the correct password, the operators cannot enter it.

4.3.3 How to watch the inverter state through function codes

Goodrive20-UL series inverters provide group P17 as the state inspection group. Users can enter into P17 directly to watch the state.

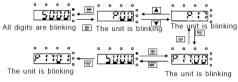


Figure 4-5 Sketch map of state watching

5 Function Parameters

The function parameters of Goodrive20-UL series inverters have been divided into 30 groups (P00–P29) according to the function, of which P18–P28 are reserved. Each function group contains certain function codes applying 3-level menus. For example, "P08.08" means the eighth function code in the P8 group function, P29 group is factory reserved, and users are forbidden to access these parameters.

For the convenience of function codes setting, the function group number corresponds to the first level menu, the function code corresponds to the second level menu and the function code corresponds to the third level menu.

1. Below is the instruction of the function lists:

The first column "Function code": codes of function parameter group and parameters;

The second column "Name": full name of function parameters;

The third column "Detailed illustration of parameters": Detailed illustration of the function parameters The fourth column "Default value": the original factory set value of the function parameter;

The fifth column "Modify": the modifying character of function codes (the parameters can be modified or not and the modifying conditions), below is the instruction:

"O": means the set value of the parameter can be modified on stop and running state;

"O": means the set value of the parameter can not be modified on the running state;

"●": means the value of the parameter is the real detection value which can not be modified.

Function code	Name	Detailed instruction of parameters	Default value	Modify
P00 Grou	p Basic func	tion group		
P00.00	Speed control mode	0: SVC 0 .No need to install encoders. Suitable in applications which need low frequency, big torque for high accuracy of rotating speed and torque control. Relative to mode 1, it is more suitable for the applications which need small power. 1: SVC 1 1 is suitable in high performance cases with the advantage of high accuracy of rotating speed and torque. It does not need to install pulse encoder. 2: SVPWM control 2 is suitable in applications which do not need high control accuracy, such as the load of fan and pump. One inverter can drive multiple motors.	1	٥
P00.01	Run command channel	Select the run command channel of the inverter. The control command of the inverter includes: start, stop, forward/reverse rotating, jogging and fault reset. 0: Keypad running command channel (* <u>LOCAL/REMOT</u> r light off)	0	0

Function	n		Default	
code	Name	Detailed instruction of parameters	value	Modify
ocuo		Carry out the command control by RUN, STOP/RST on	raido	
		the keypad.		
		Set the multi-function key QUICK/JOG to FWD/REVC		
		shifting function (P07.02=3) to change the running		
		direction; press RUN and STOP/RST simultaneously in		
		running state to make the inverter coast to stop.		
		1: Terminal running command channel		
		("LOCAL/REMOT" flickering)		
		Carry out the running command control by the forward		
		rotation, reverse rotation and forward jogging and		
		reverse jogging of the multi-function terminals		
		2: Communication running command channel		
		("LOCAL/REMOT" on);		
		The running command is controlled by the upper monitor		
		via communication		
		This parameter is used to set the maximum output		
		frequency of the inverter. Users need to pay attention to		
	Max. output frequency	this parameter because it is the foundation of the		
P00.03		frequency setting and the speed of acceleration and	60.00Hz	0
		deceleration.		
		Setting range: P00.04–400.00Hz		
		The upper limit of the running frequency is the upper		
P00.04	Upper limit of	limit of the output frequency of the inverter which is	60.00Hz	0
P00.04	the running	lower than or equal to the maximum frequency.	60.00HZ	0
	frequency	Setting range: P00.05–P00.03 (Max. output frequency)		
		The lower limit of the running frequency is that of the		
		output frequency of the inverter.		
	Lower limit of	The inverter runs at the lower limit frequency if the set		
P00.05		frequency is lower than the lower limit.	0.00Hz	0
P00.05	the running frequency	Note: Max. output frequency ≥ Upper limit frequency ≥	0.00HZ	0
	inequency	Lower limit frequency		
		Setting range: 0.00Hz–P00.04 (Upper limit of the		
		running frequency)		
	A frequency	0: Keypad data setting		
P00.06	command	Modify the value of function code P00.10 (set the	0	0
	selection	frequency by keypad) to modify the frequency by the		
	B frequency	keypad.		
P00.07	command	1: Analog Al1 setting (corresponding keypad	2	0
	selection	potentiometer)		

Function			Default	
code	Name	Detailed instruction of parameters	value	Modify
		2: Analog AI2 setting (corresponding terminal AI2)		
		3: Analog AI3 setting (corresponding terminal AI3)		
		Set the frequency by analog input terminals.		
		Goodrive20-UL series inverters provide 3 channels		
		analog input terminals as the standard configuration, of		
		which Al1 is adjusting through analog potentiometer,		
		while AI2 is the voltage/current option (0-10V/0-20mA)		
		which can be shifted by jumpers; while AI3 is voltage		
		input (-10V-+10V).		
		Note: when analog Al2 select 0-20mA input, the		
		corresponding voltage of 20mA is 10V.		
		100.0% of the analog input setting corresponds to the		
		maximum frequency (function code P00.03) in forward		
		direction and -100.0% corresponds to the maximum		
		frequency in reverse direction (function code P00.03)		
		4: High-speed pulse HDI setting		
		The frequency is set by high-speed pulse terminals.		
		Goodrive20-UL series inverters provide 1 high speed		
		pulse input as the standard configuration. The pulse		
		frequency range is 0.00-50.00kHz.		
		100.0% of the high speed pulse input setting		
		corresponds to the maximum frequency in forward		
		direction (function code P00.03) and -100.0%		
		corresponds to the maximum frequency in reverse		
		direction (function code P00.03).		
		Note: The pulse setting can only be input by		
		multi-function terminals HDI. Set P05.00 (HDI input		
		selection) to high speed pulse input, and set P05.49		
		(HDI high speed pulse input function selection) to		
		frequency setting input.		
		5: Simple PLC program setting		
		The inverter runs at simple PLC program mode when		
		P00.06=5 or P00.07=5. Set P10 (simple PLC and		
		multi-step speed control) to select the running frequency		
		running direction, ACC/DEC time and the keeping time		
		of corresponding stage. See the function description of		
		P10 for detailed information.		
		6: Multi-step speed running setting		
		The inverter runs at multi-step speed mode when		

Function	Default			
Function code	Name	Detailed instruction of parameters	value	Modify
coue		P00.06=6 or P00.07=6. Set P05 to select the current	value	
		running step, and set P10 to select the current running		
		frequency.		
		The multi-step speed has the priority when P00.06 or		
		P00.07 does not equal to 6, but the setting stage can		
		only be the $1-15$ stage. The setting stage is $1-15$ if		
		P00.06 or P00.07 equals to 6.		
		7: PID control setting		
		The running mode of the inverter is process PID control		
		when P00.06=7 or P00.07=7. It is necessary to set P09.		
		The running frequency of the inverter is the value after		
		PID effect. See P09 for the detailed information of the		
		preset source, preset value and feedback source of PID.		
		8: MODBUS communication setting		
		The frequency is set by MODBUS communication. See		
		P14 for detailed information.		
		9–11: Reserved		
		Note: A frequency and B frequency can not set as the		
		same frequency given method.		
		0: Maximum output frequency, 100% of B frequency		
	B frequency	setting corresponds to the maximum output frequency		
D00.00	command	1: A frequency command, 100% of B frequency setting	0	0
P00.08	reference selection	corresponds to the maximum output frequency. Select	0	0
		this setting if it needs to adjust on the base of A		
		frequency command.		
		0: A, the current frequency setting is A frequency		
		command		
		1: B, the current frequency setting is B frequency		
		command		
		2: A+B, the current frequency setting is A frequency		
	Combination	command + B frequency command		
P00.09	of the setting	3: A-B, the current frequency setting is A frequency	0	0
1 00.00	source	command - B frequency command	Ũ	0
	000.00	4: Max (A, B): The bigger one between A frequency		
		command and B frequency is the set frequency.		
		5: Min (A, B): The lower one between A frequency		
		command and B frequency is the set frequency.		
		Note: The combination manner can be shifted by P05		
		(terminal function)		

Function Parameters

Function			Default	
code	Name	Detailed instruction of parameters	value	Modify
P00.10	Keypad set frequency	When A and B frequency commands are selected as "keypad setting", this parameter will be the initial value of inverter reference frequency Setting range: 0.00 Hz–P00.03 (the Max. frequency)	60.00Hz	0
P00.11	ACC time 1	ACC time means the time needed if the inverter speeds up from 0Hz to the Max. One (P00.03). DEC time means the time needed if the inverter speeds	Depend on model	0
P00.12	DEC time 1	down from the Max. Output frequency to 0Hz (P00.03). Goodrive20-UL series inverters have four groups of ACC/DEC time which can be selected by P05. The factory default ACC/DEC time of the inverter is the first group. Setting range of P00.11 and P00.12: 0.0–3600.0s	Depend on model	0
P00.13	Running direction selection	0: Runs at the default direction, the inverter runs in the forward direction. WD/REV indicator is off. 1: Runs at the opposite direction, the inverter runs in the reverse direction. FWD/REV indicator is on. Modify the function code to shift the rotation direction of the motor. This effect equals to the shifting the rotation direction by adjusting either two of the motor lines (U, V and W). The motor rotation direction can be changed by QUICK/JOG on the keypad. Refer to parameter P07.02. Note: When the function parameter comes back to the default value, the motor's running direction will come back to the factory default state, too. In some cases it should be used with caution after commissioning if the change of rotation direction: It can be used in some special cases if the reverse running is disabled.	0	0
P00.14	Carrier frequency setting	Carrier <u>frequency</u> Electromagnetic Noise and leakage <u>likHz</u> <u>10kHz</u> <u>15kHz</u> <u>Low</u> <u>High</u> <u>Low</u> <u>High</u> <u>High</u>	Depend on model	0

Function code	Name	Detailed inst	ruction of parameters	Default value	Modify
		The relationship table of frequency:	of the motor type and carrier		
		Factory setting of carrier			
		Motor type	frequency		
		0.4–2.2kW	8kHz		
		waveform, little current The disadvantage of hi the switch loss, increas impact to the output ca derate on high carrier fi leakage and electrical r increase.	carrier frequency: ideal current harmonic wave and motor noise. gh carrier frequency: increasing ing inverter temperature and the pacity. The inverter needs to requency. At the same time, the magnetic interference will quency is contrary to the above,		
		too low carrier frequency torque decreasing and The manufacturer has frequency when the inv users do not need to cf When the frequency us frequency, the inverter additional 1k carrier fre Setting range: 1.0–15.0	y will cause unstable running, surge. set a reasonable carrier rerter is in factory. In general, hange the parameter. sed exceeds the default carrier needs to derate 20% for each quency.		
P00.15	Motor parameter autotuning	control accuracy is nee 2: Static autotuning 1 (the cases when the mo load. The antotuning fo the control accuracy. 3: Static autotuning 2 (se rotation autotuning when high	0	٥
P00.16	AVR function selection	The auto-adjusting fund	le procedure ction of the inverter can cancel ut voltage of the inverter because	1	0

Function	Name	Detailed instruction of parameters	Default	Modify
code	Name	Detailed instruction of parameters	value	wouny
		of the bus voltage fluctuation.		
		0: No operation		
		1: Restore the default value		
	Function	2: Clear fault records		
P00.18	restore	Note: The function code will restore to 0 after finishing	0	0
	parameter	the operation of the selected function code.		
		Restoring to the default value will cancel the user		
		password, please use this function with caution.		
P01 Grou	p Start-up ar	nd stop control		-
		0: Start-up directly:start from the starting frequency		
		P01.01		
		1: Start-up after DC braking: start the motor from the		
	Start mode	starting frequency after DC braking (set the parameter		
P01.00		P01.03 and P01.04). It is suitable in the cases where	0	0
F01.00		reverse rotation may occur to the low inertia load during	0	0
		starting.		
		2: Reserved.		
		Note: It is recommended to start the synchronous motor		
		directly.		
	Starting	Starting frequency of direct start-up means the original		
P01.01	frequency of	frequency during the inverter starting. See P01.02 for	0.50Hz	0
P01.01	direct start-up	detailed information.	0.50HZ	0
	direct start-up	Setting range: 0.00–50.00Hz		
		Set a proper starting frequency to increase the torque of		
		the inverter during starting. During the retention time of		
		the starting frequency, the output frequency of the		
P01.02	Retention time	inverter is the starting frequency. And then, the inverter		
	of the starting	will run from the starting frequency to the set frequency.	0.0s	0
	frequency	If the set frequency is lower than the starting frequency,		
		the inverter will stop running and keep in the stand-by		
		state. The starting frequency is not limited in the lower		
		limit frequency.		

Function code	Name	Detailed instruction of parameters	Default value	Modify
		Output frequency fmax f1 set by P01.01 f1 t1 set by P01.02 i t1 set by P01.02 f1 t1 set by P01.02 f1 t1 set by P01.02 f1 set by P01.02		
P01.03	The braking current before starting	The inverter will carry out DC braking at the braking current set before starting and it will speed up after the DC braking time. If the DC braking time is set to 0, the	0.0%	0
P01.04	The braking time before starting	DC braking is invalid. The stronger the braking current, the bigger the braking power. The DC braking current before starting means the percentage of the rated current of the inverter. The setting range of P01.03: 0.0–100.0% The setting range of P01.04: 0.00–50.00s	0.00s	0
P01.05	ACC/DEC selection	The changing mode of the frequency during start-up and running. 0: Linear type The output frequency increases or decreases linearly. Output frequency fmax 	0	0
P01.06	ACC time of the starting step of S curve	0.0–50.0s	0.1s	0
P01.07	DEC time of the ending step of S curve	t1=P01.06 t2=P01.07 t3=P01.06 t4=P01.07 t4=P01.07	0.1s	Ø
P01.08	Stop selection	0: Decelerate to stop: after the stop command becomes valid, the inverter decelerates to reduce the output	0	0

Function Parameters

Function code	Name	Detailed instruction of parameters	Default value	Modify
		frequency during the set time. When the frequency		
		decreases to 0Hz, the inverter stops.		
		1: Coast to stop: after the stop command becomes valid,		
		the inverter ceases the output immediately. And the load		
		coasts to stop at the mechanical inertia.		
	Starting	Starting frequency of DC braking: start the DC braking		
P01.09	frequency of	when running frequency reaches starting frequency	0.00Hz	0
	DC braking	determined by P1.09.		
	Waiting time	Waiting time before DC braking: Inverters blocks the		
P01.10	before DC	output before starting the DC braking. After this waiting	0.00s	0
	braking	time, the DC braking will be started so as to prevent		
	DC braking current	over-current fault caused by DC braking at high speed.	0.00/	0
P01.11		DC braking current: the value of P01.11 is the	0.0%	0
		percentage of rated current of inverter. The bigger the		
	DC braking time	DC braking current is, the greater the braking torque is.		
		DC braking time: the retention time of DC braking. If the		
		time is 0, the DC braking is invalid. The inverter will stop		
P01.12		at the set deceleration time.	0.00s	0
P01.13	Dead time of FWD/REV rotation	During the procedure of switching FWD/REV rotation, set the threshold by P01.14, which is as the table below: Output frequency Starting frequency 	0.0s	0

Function code	Name	Detailed instruction of parameters	Default value	Modify
		Setting range: 0.0–3600.0s		
P01.14	Switching between FWD/REV rotation	Set the threshold point of the inverter: 0: Switch after zero frequency 1: Switch after the starting frequency 2: Switch after the speed reach P01.15 and delay for P01.24	0	0
P01.15	Stopping speed	0.00–100.00Hz	0.50Hz	0
P01.16	Detection of stopping speed	0: Detect at the setting speed 1: Detect at the feedback speed (only valid for vector control)	1	0
P01.17	Detection time of the feedback speed	When P01.16=1, the actual output frequency of the inverter is less than or equal to P01.15 and is detected during the time set by P01.17, the inverter will stop; otherwise, the inverter stops in the time set by P01.24.	0.50s	0
P01.18	Terminal running protection selection when powering on	When the running command channel is the terminal control, the system will detect the state of the running terminal during powering on. 0: The terminal running command is invalid when powering on. Even the running command is detected to be valid during powering on, the inverter won't run and the system keeps in the protection state until the running command is canceled and enabled again. 1: The terminal running command is valid when powering on. If the running command is detected to be valid during powering on, the system will start the inverter automatically after the initialization. Note: This function should be selected with cautions, or serious result may follow.	0	0
P01.19	The running frequency is	This function code determines the running state of the inverter when the set frequency is lower than the	0	O

Goodrive20-UL inverters

Function			Default	
code	Name	Detailed instruction of parameters	value	Modify
	lower than the	lower-limit one.		
	lower limit one	0: Run at the lower-limit frequency		
	(valid if the	1: Stop		
	lower limit	2: Hibernation		
	frequency is	The inverter will coast to stop when the set frequency is		
	above 0)	lower than the lower-limit one if the set frequency is		
		above the lower limit one again and it lasts for the time		
		set by P01.20, the inverter will come back to the running		
		state automatically.		
		This function code determines the hibernation delay		
		time. When the running frequency of the inverter is lower		
		than the lower limit one, the inverter will stop to stand by.		
		When the set frequency is above the lower limit one		
		again and it lasts for the time set by P01.20, the inverter		
		will run automatically.		
	Hibernation	Set frequency		
P01.20	restore delay	t1 <t3, does="" inverter="" not="" so="" td="" the="" work<=""><td>0.0s</td><td>0</td></t3,>	0.0s	0
	time	t1+t2=t3, so the inverter works t3=P01.20		
		t3 Time		
		Running		
		Setting range: 0.0–3600.0s (valid when P01.19=2)		
		This function can enable the inverter start or not after the		
		power off and then power on.		
P01.21	Restart after	0: Disabled	0	0
P01.21	power off	1: Enabled, if the starting need is met, the inverter will	0	0
		run automatically after waiting for the time defined by		
		P01.22.		
	The waiting	The function determines the waiting time before the		
		automatic running of the inverter when powering off and	Í	
		then powering on.	Í	
P01.22		Output frequency	ĺ	
	time of restart	t1=P01.22 t2=P01.23	1.0s	0
	after power off			Ŭ
		<u>, + ^{t1} → ⁴²→</u> +	ĺ	
		Running Power off Power on	Í	

Function code	Name	Detailed instruction of parameters	Default value	Modify
		Setting range: 0.0–3600.0s (valid when P01.21=1)		
P01.23	Start delay time	The function determines the brake release after the running command is given, and the inverter is in a stand-by state and wait for the delay time set by P01.23 Setting range: 0.0–60.0s	0.0s	0
P01.24	Delay of the stopping speed	Setting range: 0.0–100.0s	0.0s	0
P01.25	0Hz output	Select the 0Hz output of the inverter. 0: Output without voltage 1: Output with voltage 2: Output at the DC braking current	0	0
P02 Grou	p Motor 1			
P02.01	Rated power of asynchronous motor	0.1–3000.0kW	Depend on model	0
P02.02	Rated frequency of asynchronous motor	0.01Hz-P00.03	60.00Hz	0
P02.03	Rated speed of asynchronous motor	1–36000rpm	Depend on model	Ø
P02.04	Rated voltage of asynchronous motor	0–1200V	Depend on model	0
P02.05	Rated current of asynchronous motor	0.8–6000.0A	Depend on model	0
P02.06	Stator resistor of asynchronous motor	0.001–65.535Ω	Depend on model	0

Function			Default	
code	Name	Detailed instruction of parameters	value	Modify
P02.07	Rotor resistor of asynchronous motor	0.001–65.535Ω	Depend on model	0
P02.08	Leakage inductance of asynchronous motor	0.1–6553.5mH	Depend on model	0
P02.09	Mutual inductance of asynchronous motor	0.1–6553.5mH	Depend on model	0
P02.10	Non-load current of asynchronous motor	0.1–6553.5A	Depend on model	0
P02.11	Magnetic saturation coefficient 1 for the iron core of AM1	0.0–100.0%	80.0%	0
P02.12	Magnetic saturation coefficient 2 for the iron core of AM1	0.0–100.0%	68.0%	0
P02.13	Magnetic saturation coefficient 3 for the iron core of AM1	0.0–100.0%	57.0%	0
P02.14	Magnetic saturation coefficient 4 for the iron core of AM1	0.0–100.0%	40.0%	0
P02.26	Motor overload	0: No protection 1: Common motor (with low speed compensation).	2	0

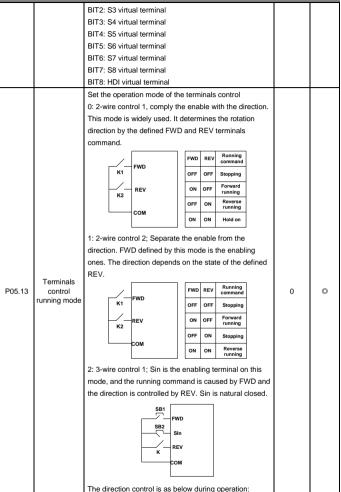
Function			Default			
code	Name	Detailed instruction of parameters	value	Modify		
	protection	Because the heat-releasing effect of the common				
	selection	motors will be weakened, the corresponding electric				
		heat protection will be adjusted properly. The low speed				
		compensation characteristic mentioned here means				
		reducing the threshold of the overload protection of the				
		motor whose running frequency is below 30Hz.				
		2: Frequency conversion motor (without low speed				
		compensation). Because the heat-releasing of the				
		specific motors won't be impacted by the rotation speed,				
		it is not necessary to adjust the protection value during				
		low-speed running.				
		Times of motor overload M = Iout/(In x K)				
		In is the rated current of the motor, lout is the output				
		current of the inverter and K is the motor protection				
		coefficient.				
		So, the bigger the value of K is, the smaller the value of				
		M is. When M =116%, the fault will be reported after 1				
	Motor	hour, when M =200%, the fault will be reported after 1				
		minute, when M>=400%, the fault will be reported				
P02.27	overload	instantly.	100.0%	0		
	protection	Time				
	coefficient	1 hour				
		Setting range: 20.0%-120.0%				
	Correction	Correct the power displaying of motor 1.				
P02.28	coefficient of	Only impact the displaying value other than the control	1.00	0		
1 02.20	motor 1 power	performance of the inverter.		0		
	motor i power	Setting range: 0.00-3.00				
P03 Grou	P03 Group Vector control					
	Speed loop	The parameters P03.00–P03.05 only apply to vector				
P03.00	proportional	control mode. Below the switching frequency 1 (P03.02),	20.0	0		
	gain1	the speed loop PI parameters are: P03.00 and P03.01.				

_				
Function code	Name	Detailed instruction of parameters	Default value	Modify
P03.01	Speed loop integral time1	Above the switching frequency 2 (P03.05), the speed loop PI parameters are: P03.03 and P03.04. PI	0.200s	0
P03.02	Low switching frequency	parameters are gained according to the linear change of two groups of parameters. It is shown as below:	5.00Hz	0
P03.03	Speed loop proportional gain 2	PI parameters	20.0	0
P03.04	Speed loop integral time 2	P03.03, P03.04 Output frequepcy	0.200s	0
P03.05	High switching frequency	P03.02 P03.05 PI has a close relationship with the inertia of the system. Adjust on the base of PI according to different loads to meet various demands. The setting range of P03.00 and P03.03: 0 - 200.0 The setting range of P03.02: 0.00Hz-P00.05 The setting range of P03.05: P03.02-P00.03	10.00Hz	0
P03.06	Speed loop output filter	0-8 (corresponds to 0-2 ⁸ /10ms)	0	0
P03.07	Compensation coefficient of vector control electromotion slip	Slip compensation coefficient is used to adjust the slip frequency of the vector control and improve the speed control accuracy of the system. Adjusting the parameter	100%	0
P03.08	Compensation coefficient of vector control brake slip	properly can control the speed steady-state error. Setting range: 50%–200%	100%	0
P03.09	Current loop percentage coefficient P	Note: These two parameters adjust the PI adjustment parameter of the current loop which affects the dynamic	1000	0
P03.10	Current loop integral coefficient l	response speed and control accuracy directly. Generally, users do not need to change the default value; Only apply to the vector control mode without PG 0 (P00.00=0). Setting range: 0–65535	1000	0

			D ()	
Function	Name	Detailed instruction of parameters	Default	Modify
code			value	
		This parameter is used to enable the torque control		
		mode, and set the torque setting means.		
		0: Torque control is invalid		
		1: Keypad setting torque (P03.12)		
		2: Analog AI1 setting torque		
	Torque setting	3: Analog Al2 setting torque		
P03.11	method	4: Analog AI3 setting torque	0	0
		5: Pulse frequency HDI setting torque		
		6: Multi-step torque setting		
		7: MODBUS communication setting torque		
		8–10: Reserved		
		Note: Setting mode 2-7, 100% corresponds to 3 times		
		of the motor rated current		
P03.12	Keypad	Setting range: -300.0%-300.0% (motor rated current)	50.0%	0
	setting torque			
P03.13	Torque given	0.000–10.000s	0.100s	0
	filter time			
	Setting source	0: keypad setting upper-limit frequency (P03.16 sets		
	of forward	P03.14, P03.17 sets P03.15)		
P03.14	rotation	1: Analog AI1 setting upper-limit frequency	0	0
	upper-limit	2: Analog AI2 setting upper-limit frequency	-	-
	frequency in	3: Analog AI3 setting upper-limit frequency		
	torque control	4: Pulse frequency HDI setting upper-limit frequency		
	Setting source	5: Multi-step setting upper-limit frequency		
	of reverse	6: MODBUS communication setting upper-limit		
P03.15	rotation	frequency	0	0
F03.15	upper-limit	7–9: Reserved	0	0
	frequency in	Note: setting method 1-9, 100% corresponds to the		
	torque control	maximum frequency		
	Torque control			
	forward			
	rotation		<u> </u>	
P03.16	upper-limit	This function is used to set the upper limit of the	60.00	0
	frequency	frequency. P03.16 sets the value of P03.14; P03.17 sets	Hz	
	keypad	the value of P03.15.		
	defined value	Setting range: 0.00 Hz–P00.03 (the Max. output		
	Torque control	frequency)		
P03.17	reverse		60.00	0
	rotation		Hz	
	Totation		l	l

Function	Name	Detailed instruction of parameters	Default	Modify
code	Nume	Detailed instruction of parameters	value	mouny
	upper-limit			
	frequency			
	keypad			
	defined value			
	Upper-limit	This function code is used to select the electromotion		
P03.18	setting of	and braking torque upper-limit setting source selection.	0	0
P03.18	electromotion	0: Keypad setting upper-limit frequency (P03.20 sets	0	0
	torque	P03.18 and P03.21 sets P03.19)		
		1: Analog AI1 setting upper-limit torque		
		2: Analog AI2 setting upper-limit torque		
	Upper-limit	3: Analog AI3 setting upper-limit torque		
P03.19		4: Pulse frequency HDI setting upper-limit torque	0	0
P03.19	setting of	5: MODBUS communication setting upper-limit torque	0	0
	braking torque	6–8: Reserved		
		Note: Setting mode 1-8, 100% corresponds to three		
		times of the motor current.		
	Electromotion			
D 00.00	torque		100.00/	~
P03.20	upper-limit		180.0%	0
	keypad setting	The function code is used to set the limit of the torque.		
	Braking	Setting range: 0.0–300.0% (motor rated current)		
	torque			_
P03.21	upper-limit		180.0%	0
	keypad setting			
	Weakening	The usage of motor in weakening control.		
	coefficient in	Function code P03.22 and P03.23 are effective at		_
P03.22	constant	constant power. The motor will enter into the weakening	0.3	0
	power zone	state when the motor runs at rated speed. Change the		
	The lowest	weakening curve by modifying the weakening control		
	weakening	coefficient. The bigger the weakening control coefficient		
P03.23	point in	is, the steeper the weak curve is.	20%	0
	constant	Setting range of P03.22: 0.1–2.0		
	power zone	Setting range of P03.23: 10%–100%		
		P03.24 set the Max. Voltage of the inverter, which is		
P03.24	Max. voltage	dependent on the site situation.	100.0%	O
	limit	Setting range: 0.0–120.0%		-
		Pre-activate the motor when the inverter starts up. Build		
P03.25	Pre-exciting	up a magnetic field inside the inverter to improve the	0.300s	0
	time	torque performance during the starting process.		-

Function code	Name	Detailed instruction of parameters	Default value	Modify
		Setting time: 0.000-10.000s		
P03.26	Weakening proportional gain	0–8000	1200	0
P03.27	Speed display selection of vector control	0: Display at the actual value 1: Display at the setting value	0	0
P04 Grou	ip SVPWM o	control		
P04.00	V/F curve setting	These function codes define the V/F curve of Goodrive20-UL motor 1 to meet the need of different loads. 0: Straight line V/F curve; applying to the constant torque load 1: Multi-dots V/F curve 2: 1.3th power low torque V/F curve 3: 1.7th power low torque V/F curve 4: 2.0th power low torque V/F curve 4: 2.0th power low torque V/F curve Curves 2–4 apply to the torque loads such as fans and water pumps. Users can adjust according to the features of the loads to get the best performance. 5: Customized V/F (V/F separation); in this mode, V can be separated from f and f can be adjusted through the frequency given channel set by P00.06 or the voltage given channel set by P00.27 to change the feature of the curve. Note: V _b in the below picture is the motor rated voltage and f _b is the motor rated frequency. $\int_{\text{Unser type}}^{\text{Linear type}} \int_{\text{Torque-stepdown characteristics VF curve (1.3 order)}}_{\text{Linear type}} \int_{\text{Linear type}}^{\text{Linear type}} \int_{\text{Linear type}}^{Linear $	0	٥
P04.01	Torque boost	Torque boost to the output voltage for the features of low	0.0%	0
P04.02	Torque boost close	frequency torque. P04.01 is for the Max. output voltage V_b . P04.02 defines the percentage of closing frequency of manual torque to f_b .	20.0%	0


Function			Default	
Function	Name	Detailed instruction of parameters	Default	Modify
code		-	value	
		Torque boost should be selected according to the load.		
		The bigger the load is, the bigger the torque is. Too big		
		torque boost is inappropriate because the motor will run		
		with over magnetic, and the current of the inverter will		
		increase to add the temperature of the inverter and		
		decrease the efficiency.		
		When the torque boost is set to 0.0%, the inverter is		
		automatic torque boost.		
		Torque boost threshold: below this frequency point, the		
		torque boost is valid, but over this frequency point, the		
		torque boost is invalid.		
		V _b		
		Vices		
		V _{boost} Output frequency		
		f _{Cut-off} f _b		
		The setting range of P04.01: 0.0%: (automatic)		
		0.1%-10.0%		
		Setting range of P04.02: 0.0%-50.0%		
	V/F	Output voltage		
P04.03	frequency	100% V _b	0.00Hz	0
	point 1	V3		
P04.04	V/F	V2	0.0%	0
P04.04	voltage point 1		0.0%	0
	V/F	V1 Output frequency		
P04.05	frequency	f1 f2 f3 f _b	0.00Hz	0
	point 2	When P04.00 =1, the user can set V//F curve through		
D 04.00	V/F	P04.03–P04.08.	0.00/	0
P04.06	voltage point 2	V/F is generally set according to the load of the motor.	0.0%	0
	V/F	Note:V1 <v2<v3, f1<f2<f3.="" frequency<="" high="" low="" td="" too=""><td></td><td></td></v2<v3,>		
P04.07	frequency	voltage will heat the motor excessively or damage.	0.00Hz	0
	point 3	Overcurrent stall or overcurrent protection may occur.		
		Setting range of P04.03: 0.00Hz-P04.05		
		Setting range of P04.04, P04.06 and P04.08:		
D04.00	V/F	0.0%-110.0% (rated motor voltage)	0.0%	~
P04.08	voltage point 3	Setting range of P04.05: P04.03- P04.07	0.0%	0
		Setting range of P04.07: P04.05–P02.02 (rated motor		
		voltage frequency)		

Function			Default	
Function code	Name	Detailed instruction of parameters	Default value	Modify
P04.09	V/F slip compensation gain	This function code is used to compensate the change of the rotation speed caused by load during compensation SVPWM control to improve the rigidity of the motor. It can be set to the rated slip frequency of the motor which is counted as below: $\Delta f = f_b - n \times p/60$ Of which, f_b is the rated frequency of the motor, its function code is P02.02; n is the rated rotating speed of the motor and its function code is P02.03; p is the pole pair of the motor. 100.0% corresponds to the rated slip frequency Δf . Setting range: 0.0–200.0%	100.0%	0
P04.10	Low frequency vibration control factor	In the SVPWM control mode, current fluctuation may occur to the motor on some frequency, especially the	10	0
P04.11	High frequency vibration control factor	motor with big power. The motor can not run stably or overcurrent may occur. These phenomena can be canceled by adjusting this parameter. Setting range of P04.10: 0–100 Setting range of P04.10: 0.400	10	0
P04.12	Vibration S	Setting range of P04.11: 0–100 Setting range of P04.12: 0.00Hz–P00.03 (the Max. frequency)	30.00 Hz	0
P04.26	Energy-saving operation selection	0: No operation 1: Automatic energy-saving operation Motor on the light load conditions, automatically adjusts the output voltage to save energy	0	0
P04.27	Voltage Setting channel	Select the output setting channel at V/F curve separation. 0: Keypad setting voltage: the output voltage is determined by P04.28. 1: Al1 setting voltage 2: Al2 setting voltage 3: Al3 setting voltage 4: HDI setting voltage 5: Multi-step speed setting voltage; 6: PID setting voltage; 7: MODBUS communication setting voltage; 8–10: Reversed Note: 100% corresponds to the rated voltage of the	0	0

Function code	Name	Detailed instruction of parameters	Default value	Modify
		motor.		
P04.28	Keypad setting voltage	The function code is the voltage digital set value when the voltage setting channel is selected as "keypad selection". Setting range: 0.0%–100.0%	100.0%	0
P04.29	Voltage increasing time	Voltage increasing time is the time when the inverter accelerates from the output minimum voltage to the output maximum voltage.	5.0s	0
P04.30	Voltage decreasing time	Voltage decreasing time is the time when the inverter decelerates from the output maximum voltage to the output minimum voltage. Setting range: 0.0–3600.0s	5.0s	0
P04.31	Output maximum voltage	Set the upper and low limit of the output voltage. Setting range of P04.31: P04.32–100.0% (the rated voltage of the motor)	100.0%	0
P04.32	Output minimum voltage	Setting range of P04.32: 0.0%- P04.31 (the rated voltage of the motor) Vmax Vset Vmin Vmin utipe04.30 Vmin utipe04.30	0.0%	٥

	Weakening	Adjust the output voltage of the inverter in SVPWM mode when weakening. Note: Invalid in the constant torque mode. $v_{oat} = \frac{Output Voltage}{V_{oat}} (P04.33-1.00) \times V_b$		
P04.33	coefficient in constant power zone	V _b Output frequency f _b 2f _b	1.00	0
DOT One		Setting range of P04.33: 1.00–1.30		
P05 Grou	up Input term			
P05.00	HDI input selection	0: HDI is high pulse input. See P05.49–P05.54 1: HDI is switch input	0	0
P05.01	S1 terminals function selection	Note: S1–S4, HDI are the upper terminals on the control board and P05.12 can be used to set the function of S5–S8	1	0
P05.02	S2 terminals function selection	0: No function 1: Forward rotation operation 2: Reverse rotation operation 3: 3-wire control operation	4	0
P05.03	S3 terminals function selection	4: Forward jogging 5: Reverse jogging 6: Coast to stop	7	0
P05.04	S4 terminals function selection	7: Fault reset 8: Operation pause 9: External fault input	0	0
P05.05	S5 terminals function selection	10: Increasing frequency setting (UP) 11: Decreasing frequency setting (DOWN) 12: Cancel the frequency change setting 13: Shift between A setting and B setting	0	0
P05.06	S6 terminals function selection	14: Shift between combination setting and A setting 15: Shift between combination setting and B setting 16: Multi-step speed terminal 1	0	0
P05.07	S7 terminals function selection	17: Multi-step speed terminal 2 18: Multi-step speed terminal 3 19: Multi- stage speed terminal 4	0	0

P05.08	S8 terminals function	20: Multi- stage speed pause 21: ACC/DEC time 1	0	0
	selection	22: ACC/DEC time 2		
P05.09	HDI terminals function selection	23: Simple PLC stop reset 24: Simple PLC pause 25: PID control pause 26: Traverse Pause (stop at the current frequency) 27: Traverse reset (return to the center frequency) 28: Counter reset 29: Torque control prohibition 30: ACC/DEC prohibition 31: Counter trigger 32: Reserve	0	٥
P05.10	Polarity selection of the input terminals	62–63: Reserved The function code is used to set the polarity of the input terminals. Set the bit to 0, the input terminal is anode. Set the bit to 1, the input terminal is cathode. BIT3 BIT7 BIT6 BIT3 BIT4 HDI S8 S7 S6 S5 BIT3 BIT2 BIT1 BIT0 S4 S3 S2 S1 The setting range: 0x000–0x1FF 0x000–0x1FF S4 S3 S2 S1 S7	0x000	0
P05.11	Switch filter time	Set the sample filter time of S1–S4 and HDI terminals. If the interference is strong, increase the parameter to avoid wrong operation. 0.000–1.000s	0.010s	0
P05.12	Virtual terminals setting	0x000–0x1FF (0: Disabled, 1:Enabled) BIT0: S1 virtual terminal BIT1: S2 virtual terminal	0x000	0

	0-OL Inverters	_					UNCIONFA	
			Sin	REV	Previous	Current		
			•		direction	direction		
			ON	OFF→ON	Forward	Reverse		
			0.1	on on	Reverse	Forward		
			ON	ON→OFF	Reverse	Forward		
			011		Forward	Reverse		
			$ON \rightarrow$	ON	Decelora	te to stop		
			OFF	OFF	Decelera	te to stop		
		3:	3-wire con	trol 2; Sin is	the enabling te	erminal on this		
		m	ode, and th	ne running co	mmand is cau	sed by SB1 or		
		SI	B3 and bot	h of them cor	ntrol the runnin	g direction.NC		
		SI	B2 generat	es the stop c	ommand.			
				SB1				
				SB2	- FWD			
					- Sin			
					- REV			
				SB3				
					COM			
			Sin	FWD	REV	Direction		
			SIII	OFF→	ON	Forward		
			ON	OFF→ ON	OFF	Reverse		
		-		ON	UFF	Forward		
			ON		$OFF \rightarrow ON$	Reverse		
		-	011	OFF				
			ON→			Decelerate		
			OFF			to stop		
					ing mode, whe			
					ter stop becau			
						even the control		
				-		rter won't work		
					and is cancele the inverter ca	-		
						-		
						when PLC signal		
			/cies stop, 1 07.04).	inven-ieriðtu s	sop and termin	al control (see		
	S1 terminal		07.04).					
P05.14	svitching on	т	he function	code definor	the correspor	iding delay time	0.000s	0
P05.14	delay time				ogrammable te	0 ,	0.0005	0
	S1			to switching	-			
P05.15	terminal	51	witching Off	to switching	011.		0.000s	0
	terminal	1					1	

Goodrive20-UL inverters

	switching off	Si electrical level		
	delay time	Si valid Invalid		
	S2 terminal	Switcn-on Switcn-off		
P05.16	switching on	delay delay	0.000s	0
	delay time	Setting range: 0.000–50.000s		
	S2			
P05.17	terminal		0.000s	0
	switching off			
	delay time			
	S3 terminal			-
P05.18	switching on		0.000s	0
	delay time			
	S3			
P05.19	terminal		0.000s	0
	switching off		0.0000	
	delay time			
	S4 terminal			
P05.20	switching on		0.000s	0
	delay time			
	S4			
P05.21	terminal		0.000s	0
1 00.21	switching off		0.0000	-
	delay time			
	HDI			
P05.30	terminal		0.000s	0
F03.30	switching on		0.0003	0
	delay time			
	HDI			
P05.31	terminal		0.000s	0
1 00.01	switching off			
	delay time			
P05.32	Lower limit of	Al1 is set by the analog potentiometer, Al2 is set by	0.00V	0
. 00.02	Al1	control terminal Al2 and Al3 is set by control terminal	0.001	-
	Correspondin	Al3. The function code defines the relationship between		
P05.33	g setting of the	the analog input voltage and its corresponding set value.	0.0%	0
1 00.00	lower limit of	If the analog input voltage beyond the set minimum or		
	Al1	maximum input value, the inverter will count at the		
P05.34	Upper limit of	minimum or maximum one.	10.00V	0
1 00.04	Al1	When the analog input is the current input, the	10.000	
P05.35	Correspondin	corresponding voltage of 0–20mA is 0–10V.	100.0%	0

g setting of	In different cases, the corresponding rated value of		
the upper limit	100.0% is different. See the application for detailed		
of AI1	information.		
AI1 input filter	The figure below illustrates different applications:	0.100c	0
time	Corresponding setting	0.1005	0
Lower limit of	100%	0.001/	0
AI2		0.000)
Correspondin			
g setting of the		0.09/	0
lower limit of	1 20mA	0.0%	0
AI2	AUTAIZ		
Upper limit of		10.001/	0
AI2		10.000	0
Correspondin	Input filter time: this parameter is used to adjust the		
g setting of	sensitivity of the analog input. Increasing the value	100.0%	0
the upper limit	properly can enhance the anti-interference of the	100.0 %	0
of AI2	analog, but weaken the sensitivity of the analog input		
AI2 input filter	Note: Al1 supports 0–10V input and Al2 supports 0–10V	0.1000	0
time	or 0-20mA input, when AI2 selects 0-20mA input, the	0.1008	0
Lower limit of	corresponding voltage of 20mA is 10V. Al3 can support	10.001/	0
AI3	the output of -10V-+10V.	-10.000	0
Correspondin	Setting range of P05.32: 0.00V-P05.34		
g setting of the	Setting range of P05.33: -100.0%-100.0%	100.0%	0
lower limit of	Setting range of P05.34: P05.32-10.00V	-100.0%	0
AI3	Setting range of P05.35: -100.0%-100.0%	-100.0%	
Middle value	5	0.001/	0
of AI3		0.000	0
Correspondin	5		
g middle	5	0.0%	0
setting of AI3	5		
Upper limit of		10.001/	0
AI3	5	10.007	0
Correspondin			
g setting of	0 0	100.001	~
the upper limit	5	100.0%	0
of AI3			
AI3 input filter	Setting range of P05.48: 0.000s-10.000s	0.400	0
time		0.100s	0
Lower limit		0.000	0
frequency of	0.000KHz-P05.52	kHz	0
	the upper limit of Al1 Al1 input filter time Lower limit of Al2 Correspondin g setting of the lower limit of Al2 Upper limit of Al2 Correspondin g setting of the upper limit of Al2 Al2 input filter time Lower limit of Al3 Correspondin g setting of the lower limit of Al3 Middle value of Al3 Correspondin g middle setting of Al3 Correspondin g middle setting of Al3 Correspondin g setting of Al3 Correspondin g middle setting of Al3 Correspondin g setting of Al3 Correspondin g setting of Al3 Correspondin g setting of Al3 Correspondin g setting of Al3 Correspondin g setting of Al3 Correspondin g setting of Al3 Correspondin g setting of the upper limit of Al3 Correspondin g setting of the upper limit of Al3 Correspondin g setting of the upper limit of Al3 Correspondin g setting of the upper limit of Correspondin g setting of the upper limit of Correspondin g setting of the upper limit of Correspondin g setting of the upper limit of Corr	the upper limit of Al1 Al1 input filter time Lower limit of Al2 Correspondin g setting of the lower limit of Al2 Upper limit of Al2 Upper limit of Al2 Upper limit of Al2 Upper limit of Al2 Correspondin g setting of the upper limit of Al2 Upper limit of Al2 Correspondin g setting of the upper limit of Al2 Note: Al1 supports 0–10V input and Al2 supports 0–10V or 0–20mA input, when Al2 selects 0–20mA input, the corresponding voltage of 20mA is 10V. Al3 can support the output of -10V—+10V. Correspondin g setting of the lower limit of Al3 Correspondin g middle setting range of P05.38: -100.0%–100.0% Setting range of P05.41: 0.000s–10.000S Setting range of P05.42: -10.00V–P05.34 Setting range of P05.43: -100.0%–100.0% Setting range of P05.41: -100.0%–100.0% Setting range of P05.41: -100.0%–100.0% Setting range of P05.42: -100.0V–P05.44 Setting range of P05.42: -100.0V/=05.44 Setting range of P05.42: -100.0V/=05.44 Setting range of P05.44: P05.42–P05.46 Setting range of P05.44: P05.44–10.00V Setting range of P05.44: P05.44–10.00V Setting range of P05.44: P05.44–10.00V Setting range of P05.44: P05.44–10.00V	the upper limit of Al1 100.0% is different. See the application for detailed information. 0.100s Al1 input filter time The figure below illustrates different applications: 0.100s Al2 0.00V 0.00V Correspondin g setting of the lower limit of Al2 0.00V 0.00V Upper limit of Al2 100.0% is different. See the applications: 0.100s Upper limit of Al2 100.0% is different is used to adjust the sensitivity of the analog input. Increasing the value properly can enhance the anti-interference of the analog, but weaken the sensitivity of the analog input. 100.0% Al2 input filter Note: Al1 supports 0-10V input and Al2 supports 0-10V or 0-20mA input, when Al2 selects 0-20mA input, the corresponding voltage of 20mA is 10V. Al3 can support the output of -10V—+10V. 0.100s Correspondin g setting of the setting range of P05.32: .100.0%-100.0% Setting range of P05.33: .100.0%-100.0% Setting range of P05.33: .100.0%-100.0% Setting range of P05.33: .100.0%-100.0% Setting range of P05.34: .P05.32-10.00V .000V Correspondin g middle setting range of P05.34: .100.0%-100.0% Setting range of P05.41: .0000s-100.0% Setting range of P05.42: .10.00V-P05.44 10.00V Correspondin g setting of Al3 Setting range of P05.42: .10.00V=-P05.44 10.00V Correspondin g setting of Al3 Setting range of P05.42: .10.00V=P05.44 10.00V Setting range of P05.41: .0000s-100.0% Setting range of P05.42: .10.00

	HDI			
P05.51	Correspondin g setting of HDI low frequency setting	-100.0%-100.0%	0.0%	0
P05.52	Upper limit frequency of HDI	P05.50-50.000kHz	50.000 kHz	0
P05.53	Correspondin g setting of upper limit frequency of HDI	-100.0%-100.0%	100.0%	0
P05.54	HDI frequency input filter time	0.000s-10.000s	0.100s	0
P06 Grou	up Output te	rminals		
P06.01	Y1 output selection	0: Invalid 1: In operation	0	
P06.03	Relay RO1 output selection	2: Forward rotation operation3: Reverse rotation operation4: Jogging operation	1	0
P06.04	Relay RO2 output selection	5: The inverter fault 6: Frequency degree test FDT1 7: Frequency degree test FDT2 8: Frequency arrival 9: Zero speed running 10: Upper limit frequency arrival 11: Lower limit frequency arrival 12: Ready for operation 13: Pre-magnetizing 14: Overload pre-alarm 15: Underload pre-alarm 16: Completion of simple PLC stage 17: Completion of simple PLC stage 17: Completion of simple PLC stage 18: Setting count value arrival 19: Defined count value arrival 20: External fault valid 21: Reserved 22: Running time arrival	5	0

		23: MODBUS communication virtual terminals output		
		24–25: Reserved		
		26: Establishment of DC bus voltage		
		27–30: Reserved		
		The function code is used to set the pole of the output		
		terminal.		
	Polarity	When the current bit is set to 0, input terminal is positive.		
P06.05	selection of	When the current bit is set to 1, input terminal is	0	0
	output	negative.		
	terminals	BIT3 BIT2 BIT1 BIT0		
		RO2 RO1 Reserved Y1		
		Setting range: 0–F		
P06.06	Y1 open delay time	The setting range: 0.000–50.000s	0.000s	0
P06.07	Y1C off delay	The setting range: 0.000–50.000s	0.000s	0
	time			
P06.10	RO1 switching on delay time	The function code defines the corresponding delay time of the electrical level change during the programmable	0.000s	0
	RO1 switching	terminal switching on and off.	0.000	0
P06.11	off delay time	RO electrical level	0.000s	0
	RO2 switching			0
P06.12	on delay time	RO valid Invalid Invalid	0.000s	0
		iter Switch-on → iter Switch-off → delay delay		
	RO2 switching			
P06.13	off delay time	Octaing range: 0.000 00.0000	0.000s	0
		Note: P06.08 and P06.08 are valid only when		
	101 1	P06.00=1.		
P06.14	AO1 output	0: Running frequency	0	0
<u> </u>	selection	1: Setting frequency		
		2: Ramp reference frequency		
		3: Running rotation speed		
		4: Output current (relative to 2 times rated current of the		
		inverter)		
		5: Output current (relative to 2 times rated current of the		
-	AO2 output	motor)		
P06.15	selection	6: Output voltage	0	0
		7: Output power		
		8: Set torque value		
		9: Output torque		
		10: Analog Al1 input value		
		11: Analog Al2 input value		
		12: Analog AI3 input value		

		-		
		13: High speed pulse HDI input value		
		14: MODBUS communication set value 1		
		15: MODBUS communication set value 2		
		16–21: Reserved		
		22: Torque current (corresponds to 3 times rated current		
		of the motor)		
		23: Ramp reference frequency (with sign)		
		24–30: Reserved		
	Lower limit of			
P06.17	AO1 output	The above function codes define the relative relationship	0.0%	0
	Correspondin	between the output value and analog output. When the		
	g AO1 output	output value exceeds the range of set maximum or		_
P06.18	to the lower	minimum output, it will count according to the low-limit or	0.00V	0
	limit	upper-limit output.		
	Upper limit of	When the analog output is current output, 1mA equals to		
P06.19	AO1 output	0.5V.	100.0%	0
	The	In different cases, the corresponding analog output of		
		100% of the output value is different. For detailed		
P06.20	corresponding	information, please refer to analog output instructions in	10.00V	0
	AO1 output to	Chapter 7.		
	the upper limit	AO 10V (20mA)		
P06.21	AO1 output	7	0.000s	0
	filter time			
P06.22	Lower limit of		0.0%	0
	AO2 output			
	Correspondin	0.0% 100.0%		
P06.23	g AO2 output	Setting range of P06.17: -100.0%- P06.19	0.00V	0
. 00.20	to the lower	Setting range of P06.18: 0.00V–10.00V		
	limit	Setting range of P06.19: P06.17–100.0%		
P06.24	Upper limit of	Setting range of P06.20: 0.00V–10.00V	100.0%	0
1 00.24	AO2 output	Setting range of P06.21: 0.000s-10.000s	.00.070	-
	Correspondin	Setting range of P06.22: -100.0%– P06.24		
P06.25	g AO2 output	Setting range of P06.23: 0.00V–10.00V	10.00V	0
P06.25	to the upper	Setting range of P06.24: P06.22–100.0%	10.00 V	0
	limit	Setting range of P06.25: 0.00V–10.00V		
D 00.05	AO2 output	Setting range of P06.26: 0.000s–10.000s	0.000s	0
P06.26	filter time		0.0005	0
P07 Gro	up Human-Ma	ichine Interface		
		0-65535		
P07.00	User's	The password protection will be valid when setting any	0	0
	password	non-zero number.		
			1	

	LO-OL Inventers		unction a	
		00000: Clear the previous user's password, and make		
		the password protection invalid.		
		After the user's password becomes valid, if the		
		password is incorrect, users cannot enter the parameter		
		menu. Only correct password can make the user check		
		or modify the parameters. Please remember all users'		
		passwords.		
		Retreat editing state of the function codes and the		
		password protection will become valid in 1 minute. If the		
		password is available, press PRG/ESC to enter into the		
		editing state of the function codes, and then "0.0.0.0.0"		
		will be displayed. Unless input right password, the		
		operator can not enter into it.		
		Note: Restoring to the default value can clear the		
		password, please use it with caution.		
		0: No operation		
	Parameter copy Parameter copy N ad	1: Upload the local function parameter to the keypad		
		2: Download the keypad function parameter to local		
		address (including the motor parameters)		
		3: Download the keypad function parameter to local		
		address (excluding the motor parameter of P02 and P12		_
P07.01		group)	0	0
		4: Download the keypad function parameters to local		
		address (only for the motor parameter of P02 and P12 group)		
		Note : After finish 1–4, the parameter will restore to 0		
		and the uploading and downloading does not include		
		P29.		
		Ones: QUICK/JOG key function		
		0: Null		
		1: Jogging		
		2: Switch display state via shift key		
		3: Switch between FWD/REV rotation		
		4: Clear UP/DOWN setting		
	Key	5: Coast to stop		
P07.02	function	6: Switch running command ref. mode in order	1	O
	selection	7: Quick commission mode (based on non-default		
		parameter)		
		tens:		
		0: keys unlocked		
		1: Lock all keys		
		-		
		2: Lock part of the keys (lock PRG/ESC key only)		

000000000	20-OL Inventers		UNCIONFA	amotoro
		When P07.02=6, set the shifting sequence of running		
	QUICK/JOG	command channels.		
	the shifting	0: Keypad control \rightarrow terminals control \rightarrow communication		
P07.03	sequence of	control	0	0
	running	1: Keypad control←→terminals control		
	command	2: Keypad control ←→ communication control		
		3: Terminals control ←→ communication control		
		Select the stop function by STOP/RST. STOP/RST is		
		effective in any state for the keypad reset.		
P07.04	STOP/RST	0: Only valid for the keypad control	0	0
P07.04	stop function	1: Both valid for keypad and terminals control	0	0
		2: Both valid for keypad and communication control		
		3: Valid for all control modes		
		0x0000-0xFFFF		
		BIT0: running frequency (Hz on)		
		BIT1: set frequency (Hz flickering)		
		BIT2: bus voltage (Hz on)		
		BIT3: output voltage (V on)		
	Displayed parameters 1 of running state	BIT4: output current (A on)		
		BIT5: running rotation speed (rpm on)		
		BIT6: output power (% on)		
P07.05		BIT7: output torque (% on)	0x03FF	0
		BIT8: PID reference (% flickering)		
		BIT9: PID feedback value (% on)		
		BIT10: input terminals state		
		BIT11: output terminals state		
		BIT12: torque set value (% on)		
		BIT13: pulse counter value		
		BIT14: reserved		
		BIT15: PLC and the current step of multi-step speed		
		0x0000-0xFFFF		
		BIT0: analog AI1 value (V on)		
		BIT1: analog Al2 value (V on)		
		BIT2: analog AI3 value (V on)		
	Displayed	BIT3: high speed pulse HDI frequency		
P07.06	parameters 2	BIT4: motor overload percentage (% on)	0x0000	
	of running	BIT5: the inverter overload percentage (% on)		
	state	BIT6: ramp frequency given value (Hz on)		
		BIT7: linear speed		
		BIT8: AC inlet current (A on)		
		BIT9-15: reserved		

P07.07	The parameter selection of the stop state	BIT6: torque reference (% flickering)	0x00FF	0
P07.08	Frequency display coefficient	0.01–10.00 Displayed frequency=running frequency x P07.08	1.00	0
P07.09	Speed display coefficient	0.1–999.9% Mechanical rotation speed =120 x displayed running frequencyxP07.09/motor pole pairs	100.0%	0
P07.10	Linear speed displayed coefficient	0.1–999.9% Linear speed= Mechanical rotation speed x P07.10	1.0%	0
P07.11	Rectifier bridge module temperature	-20.0–120.0°C		•
P07.12	Convertering module temperature	-20.0–120.0°C		•
P07.13	Software version	1.00–655.35		•
P07.14	Local accumulative running time	0–65535h		•
P07.15	Most significant digit of power consumption	Display the power used by the inverter. The power consumption of the inverter = P07.15 x 1000 + P07.16 Setting range of P07.15: 0–65535kWh (x 1000)		•
P07.16	Least	Setting range of P07.16: 0.0–999.9kWh		•

	significant digit of power consumption		
P07.17	Reserved	Reserved	•
P07.18	The rated power of the inverter	0.4–3000.0KW	•
P07.19	The rated voltage of the inverter	50-1200V	•
P07.20	The rated current of the inverter	0.1–6000.0A	•
P07.21	Factory bar code 1	0x0000-0xFFFF	•
P07.22	Factory bar code 2	0x0000-0xFFFF	•
P07.23	Factory bar code 3	0x0000-0xFFFF	•
P07.24	Factory bar code 4	0x0000-0xFFFF	•
P07.25	Factory bar code 5	0x0000-0xFFFF	•
P07.26	Factory bar code 6	0x0000-0xFFFF	•
P07.27	Current fault type	0: No fault 1–3: Reserved 4: OC1	•

		5: OC2		
		6: OC3		
		7: OV1		
		8: OV2		
		9: OV3		
	Previous fault	10: UV		-
P07.28	type	11: Motor overload (OL1)		•
	31.	12: The inverter overload (OL2)		
		13: Input side phase loss (SPI)		
		14: Output side phase loss (SPO)		
		15: Overheat of the rectifier module (OH1)		
		16: Overheat fault of the inverter module (OH2)		
	Previous 2	17: External fault (EF)		
P07.29	fault type	18: 485 communication fault (CE)		•
	Previous 3	19: Current detection fault (ItE)		
P07.30	fault type	20: Motor antotune fault (tE)		•
	Previous 4	21: EEPROM operation fault (EEP)		
P07.31	fault type	22: PID response offline fault (PIDE)		•
	Previous 5	23: Reserved		
		24: Running time arrival (END)		
		25: Electrical overload (OL3)		
		26: PCE		
		27: UPE		-
P07.32	fault type	28: DNE		•
		29–33: Reserved		
		34: Speed deviation fault (dEu)		
		35: Maladjustment (STo)		
		36: Underload fault (LL)		
	Current fault			
P07.33	running		0.00Hz	•
	frequency			
	Ramp			
D07.0.1	reference		0.00Hz	
P07.34	frequency at		0.00HZ	
	current fault			
	Output voltage			
P07.35	at the current		0V	
	fault			
	Output current			
P07.36	at the current		0.0A	
	fault			

	Current bus	0.01/	
P07.37	voltage at the	0.0V	
	current fault		
	The Max.		
P07.38	temperature at	0.0°C	
FU1.30	the current	0.0 0	
	fault		
	Input terminals		
P07.39	state at the	0	•
	current fault		
	Output		
P07.40	terminals state	0	
P07.40	at the current	0	•
	fault		
	Reference		
P07.41	frequency at	0.00Hz	•
	previous fault		
	Ramp		
P07.42	reference	0.00Hz	
P07.42	frequency at	0.00112	•
	previous fault		
	Output voltage		
P07.43	at previous	0V	•
	fault		
	The output		
P07.44	current at	0.0A	•
	previous fault	0 0.00Hz 0.00Hz 0V	
P07.45	Bus voltage at	0 0.00Hz 0.00Hz 0V 0.0A 0.0V 0.0V 0.0°C 0	
PU7.45	previous fault	0.00	•
	The Max.		
P07.46	temperature at	0.0°C	•
	previous fault		
	Input terminals		
P07.47	state at	0	•
	previous fault		
	Output		
D07.40	terminals state	0	
P07.48	at previous	U	•
	fault		
P07.49	Reference	0.00Hz	•
L	l		

0.00Hz	
0.00Hz	
0V (
0.0A	
0.0V	
0.0°C	
0.0 0	
0	
0	
0	
	-
1 1	
Depend	
on C	С
model	
Depend	
• · · · · · · · · · · · · · · · · · · ·	С
e i model	
y default one. Depend	
on C	С
model	
Depend	С
	or detailed definition. our groups of ACC/DEC P5 group. The first group y default one. y d

			on	
			model	
			Depend	
P08.04	ACC time 4		on	0
			model	
			Depend	
P08.05	DEC time 4		on	0
			model	
	Jogging	This parameter is used to define the reference		
P08.06	running	frequency during jogging.	5.00Hz	0
	frequency	Setting range: 0.00Hz–P00.03 (the Max. frequency)		
	Jogging		Depend	
P08.07	running ACC	The jogging ACC time means the time needed if the	on	0
	time	inverter runs from 0Hz to the Max. Frequency.	model	
	Jogging	The jogging DEC time means the time needed if the	Depend	
P08.08	running DEC	inverter goes from the Max. Frequency (P00.03) to 0Hz.	on	0
	time	Setting range: 0.0–3600.0s	model	
	Jumping	When the set frequency is in the range of jumping		_
P08.09	frequency 1	frequency, the inverter will run at the edge of the	0.00Hz	0
	jumping	jumping frequency.		
P08.10	frequency	The inverter can avoid the mechanical resonance point	0.00Hz	0
	range 1	by setting the jumping frequency. The inverter can set		-
	Jumping	three jumping frequency. But this function will be invalid		-
P08.11	frequency 2	if all jumping points are 0.	0.00Hz	0
	Jumping	Set frequency f		
P08.12	frequency	Jump	0.00Hz	0
	range 2	frequency 3		
	Jumping	Jump		
P08.13	frequency 3	frequency 2	0.00Hz	0
	inequency o	Jump		
	Jumping	frequency1 1/2 x Jump bandwidth 1		
P08.14	frequency	∠ ▶	0.00Hz	0
	range 3	Time t		
	-	Setting range: 0.00–P00.03 (the Max. frequency)		
P08.15	Traverse	This function applies to the industries where traverse	0.0%	0
	range	and convolution function are required such as textile and		
	Sudden	chemical fiber.		
P08.16	jumping	The traverse function means that the output frequency	0.0%	0
P08.16	frequency	of the inverter is fluctuated with the set frequency as its	0.070	0
	range	center. The route of the running frequency is illustrated		

	Traverse	as below, of which the traverse is set by P08.15 and		
P08.17			5.0s	0
P08.18	Traverse declining time	when P08.15 is set as 0, the traverse is 0 with no function. Output frequency Center requency Lower limit Center traverse range: The traverse running is limited by upper and low frequency. The traverse range relative to the center frequency: traverse range AW = center frequencyxtraverse range P08.15. Sudden jumping frequency = traverse range AW×sudden jumping frequency, the value which is relative to the sudden jumping frequency. The traverse frequency. The taken jumping frequency. The taken jumping frequency. The taken jumping frequency. The asing time of the traverse frequency: The time from the lowest point to the highest one. The declining time of the traverse frequency: The time from the highest point to the lowest one. Setting range of P08.15: 0.0–100.0% (relative to the set frequency) Setting range of P08.17: 0.1–3600.0s	5.0s	0
P08.25	Set count value	The counter works based on the input pulse signals of the HDI terminals.	0	0
P08.26	Specified count value	When the count value reaches the specified number, the multi-function output terminal sends the signal of "The specified count value is reached" and the counter continues to count; when the count value reaches the set number, the multi-function output terminal sends the signal of "The set count value is reached", and the counter will be reset to zero and recount when the next pulse occurs. The value of P08.26 cannot be greater than that of P08.25. The function is illustrated as below:	0	0

		S terminal RO1. RO2 The set count value is reached. The set count value is reached. The set count value is reached. Setting range of P08.25: P08.26–65535 Setting range of P08.26: 0–P08.25		
P08.27	Setting running time	Pre-set running time of the inverter. When the accumulative running time achieves the set time, the multi-function digital output terminals will output the signal of "running time arrival". Setting range: 0–65535min	0m	0
P08.28	Time of fault reset	The time of the fault reset: set the fault reset time by selecting this function. If the reset time exceeds this set	0	0
P08.29	Interval time of automatic fault reset		1.0s	0
P08.30	Frequency decreasing ratio in drop control	The output frequency of the inverter changes as the load. And it is mainly used to balance the power when several inverters drive one load. Setting range: 0.00–50.00Hz	0.00Hz	0
P08.32	FDT1 electrical level detection value	When the output frequency exceeds the corresponding frequency of FDT electrical level, the multi-function digital output terminals will output the signal of "frequency level detect FDT" until the output frequency	60.00Hz	0
P08.33	FDT1 retention detection value	decreases to a value lower than (FDT electrical level—FDT retention detection value) the corresponding frequency, the signal is invalid. Below is the waveform diagram:	5.0%	0
P08.34	FDT2 electrical level detection value	FDT electrical level	60.00Hz	0
P08.35	FDT2 retention detection value	V, R01, R02 V, R01, R02 Setting range of P08.32: 0.00Hz–P00.03 (the Max. frequency)	5.0%	0

Setting range of P08.33 and P08.35: 0.0–100.0%		
Setting range of P08.34: 0.00Hz–P00.03		
(the Max. frequency)		
When the output frequency is among the below or above		
range of the set frequency, the multi-function digital		
output terminal will output the signal of "frequency		
arrival", see the diagram below for detailed information:		
Output frequency		
Frequency Set frequency Detectionn range		
P08.36 arrival 0	0.00Hz	0
detection		
range		
у. Н Н		
R01, R02		
The setting range: 0.00Hz–P00.03 (the Max. frequency)		
This parameter is used to control the internal braking		
Energy unit.		
P08.37 Braking 0: Disabled	0	0
enable 1: Enabled		
Note: Only applied to internal braking unit.		
Alter setting the original bus voltage of energy braking,	220V	
	voltage: 380.0V	
Energy The factory changes with the voltage level.	000.01	
P08.38 braking Setting range: 200.0–2000.0V		0
threshold In order to prevent customers set the value is too large,	460V	0
	voltage: 740.0V	
Voltage 220V 460V		
Range 375-400V 715-780V		
P08.39 Cooling fan 0: Rated running mode	0	0
running mode 1: The fan keeps on running after power on	0	0
0x00–0x21		
LED ones: PWM mode selection		
0: PWM mode 1, three-phase modulation and		
two-modulation		
P08.40 1: PWM mode 2, three-phase modulation	0x01	0
LED tens: low-speed carrier frequency limit mode		
0: Low-speed carrier frequency limit mode 1, the carrier		
frequency will limit to 2k if it exceeds 2k at low speed		
1: Low-speed carrier frequency limit mode 2, the carrier		

		frequency will limit to 4k if it exceeds 4k at low speed		
		2: No limit		
P08.41	Over commission selection	LED ones 0: Invalid 1: Valid LED tens (for factory commissioning) 0: Light overcommission; in zone 1 1: Heavy overcommission; in zone 2 0x0000–0x1223 LED ones: frequency enable selection	0x00	٥
P08.42	Keypad data control setting	D: Both A//V keys and analog potentiometer adjustments are valid 1: Only A//V keys adjustment is valid 2: Only analog potentiometer adjustments is valid 3: Neither A//V keys nor digital potentiometer adjustments are valid LED tens: frequency control selection 0: Only valid when P00.06=0 or P00.07=0 1: Valid for all frequency setting manner 2: Invalid for multi-step speed when multi-step speed has the priority LED hundreds: action selection during stopping 0: Setting is valid 1: Valid during running, cleared after stopping 2: Valid during running, cleared after receiving the stop command LED thousands: A//V keys and analog potentiometer integral function 0: The Integral function is valid 1: The Integral function is invalid	0x0000	0
P08.43	Integral ratio of the keypad potentiometer	0.01–10.00s	0.10s	0
P08.44	UP/DOWN terminals control setting	0x00-0x221 LED ones: frequency control selection 0: UP/DOWN terminals setting valid 1: UP/DOWN terminals setting valid LED tens: frequency control selection 0: Only valid when P00.06=0 or P00.07=0 1: All frequency means are valid 2: When the multi-step are priority, it is invalid to the	0x000	0

		multi-step		
		LED hundreds: action selection when stop		
		0: Setting valid		
		1: Valid in the running, clear after stop		
		2: Valid in the running, clear after receiving the stop		
		commands		
	UP terminals			
P08.45	frequency	0.01–50.00s	0.50 s	0
	changing ratio			
	DOWN			
	terminals			
P08.46	frequency	0.01–50.00s	0.50 s	0
	changing ratio			
	shanging ratio	0x000–0x111		
		LED ones: Action selection when power off.		
		0: Save when power off		
		1: Clear when power off		
		LED tens: Action selection when MODBUS set		
	Action			
P08.47	selection at	frequency off	0x000	0
	power loss	0: Save when power off		
		1: Clear when power off		
		LED hundreds: The action selection when other		
		frequency set frequency off		
		0: Save when power off		
		1: Clear when power off		
	Most			
	significant digit			
P08.48	of original	This parameter is used to set the original value of the	0 kWh	0
	power	power consumption.		
	consumption	The original value of the power consumption =P08.48 x		
	Least	1000 + P08.49		
	significant digit	Setting range of P08.48: 0–59999 kWh (k)		
P08.49	of original	Setting range of P08.49:0.0-999.9 kWh	0.0 kWh	0
	power			
	consumption			
		This function code is used to enable magnetic flux.		
		0: Invalid.		
P08.50	Magnetic flux	100-150: the bigger the coefficient, the bigger the	0	0
	braking	braking strength.	U	0
		This inverter can slow down the motor by increasing the		
		magnetic flux. The energy generated by the motor		

occanto	20-OL Inverters		UNCLION Fa	amotoro
		during braking can be transformed into heat energy by		
		increasing the magnetic flux.		
		The inverter monitors the state of the motor continuously		
		even during the magnetic flux period. So the magnetic		
		flux can be used in the motor stop, as well as to change		
		the rotation speed of the motor. Its other advantages		
		are:		
		Brake immediately after the stop command. It does not		
		need to wait the magnetic flux weaken.		
		The cooling is better. The current of the stator other than		
		the rotor increases during magnetic flux braking, while		
		the cooling of the stator is more effective than the rotor.		
	Current			
	adjustment	This function code is used to adjust the displayed		-
P08.51	coefficient on	current of the AC input side.	0.56	0
	the input side	Setting range: 0.00–1.00		
P09 Gro	up PID cont			
		When the frequency command selection (P00.06, P00.		
		07) is 7 or the voltage setting channel selection (P04.27)		
		is 6, the running mode of the inverter is procedure PID		
		controlled.		
		The parameter determines the target given channel		
		during the PID procures.		
		0: Keypad digital given (P09.01)		
		1: Analog channel Al1 given		
		2: Analog channel Al2 given		
		3: Analog channel AI3 set		
P09.00	PID reference	4: High speed pulse HDI set	0	0
	source	5: Multi-step speed set		
		6: MODBUS communication set		
		7–9:Reserved		
		The setting target of procedure PID is a relative one,		
		100% of the setting equals to 100% of the response of		
		the controlled system.		
		The system is calculated according to the relative value		
		(0–100.0%).		
		Note: Multi-step speed given, it is realized by setting		
		P10 group parameters.		
	Keypad PID	When P09.00=0, set the parameter whose basic value is		_
P09.01	preset	the feedback value of the system.	0.0%	0
	product	and resublish value of the system.		

		The setting range:-100.0%-100.0%		
P09.02	PID feedback source	Select the PID channel by the parameter. 0: Analog channel Al1 feedback 1: Analog channel Al2 feedback 2: Analog channel Al3 feedback 3: High speed HDI feedback 4: MODBUS communication feedback 5–7: Reserved Note: The reference channel and the feedback channel can not coincide, otherwise, PID can not control effectively.	0	0
P09.03	PID output feature	0: PID output is positive: when the feedback signal exceeds the PID reference value, the output frequency of the inverter will decrease to balance the PID. For example, the strain PID control during wrapup 1: PID output is negative: When the feedback signal is stronger than the PID reference value, the output frequency of the inverter will increase to balance the PID. For example, the strain PID control during wrapdown	0	0
P09.04	Proportional gain (Kp)	The function is applied to the proportional gain P of PID input. P determines the strength of the whole PID adjuster. The parameter of 100 means that when the offset of PID feedback and given value is 100%, the adjusting range of PID adjustor is the Max. frequency (ignoring integral function and differential function). The setting range:0.00–100.00	1.00	0
P09.05	Interval time(Ti)	This parameter determines the speed of PID adjustor to carry out integral adjustment on the deviation of PID feedback and reference. When the deviation of PID feedback and reference is 100%, the integral adjustor works continuously after the time (ignoring the proportional effect and differential effect) to achieve the Max. Frequency (P00.03) or the Max. Voltage (P04.31). Shorter the integral time, stronger is the adjustment Setting range: 0.00–10.00s	0.10s	0
P09.06	Differential time(Td)	This parameter determines the strength of the change ratio when PID adjustor carries out integral adjustment	0.00s	0

		on the deviation of PID feedback and reference. If the PID feedback changes 100% during the time, the adjustment of integral adjustor (ignoring the proportional effect and differential effect) is the Max. Frequency (P00.03) or the Max. Voltage (P04.31). Longer the integral time, stronger is the adjusting. Setting range: 0.00–10.00s		
P09.07	Sampling cycle(T)	This parameter means the sampling cycle of the feedback. The modulator calculates in each sampling cycle. The longer the sapling cycle is, the slower the response is. Setting range: 0.001–10.000s	0.100s	0
P09.08	PID control deviation limit	The output of PID system is relative to the maximum deviation of the close loop reference. As shown in the diagram below, PID adjustor stops to work during the deviation limit. Set the function properly to adjust the accuracy and stability of the system.	0.0%	0
P09.09	Output upper limit of PID		100.0%	0
P09.10	Output lower limit of PID	100.0 % corresponds to Max. Frequency or the Max. Voltage of (P04.31) Setting range of P09.09: P09.10–100.0% Setting range of P09.10: -100.0%–P09.09	0.0%	0
P09.11	Feedback offline detection value	Set the PID feedback offline detection value, when the detection value is smaller than or equal to the feedback offline detection value, and the lasting time exceeds the	0.0%	0
P09.12	Feedback offline detection time	set value in P09.12, the inverter will report "PID feedback offline fault" and the keypad will display PIDE.	1.0s	0

		P09.11 P0		
P09.13	PID adjustment selection	Setting range of P09.12: 0.0–3600.0s 0x00–0x11 LED ones: 0: Keep on integral adjustment when the frequency achieves the upper and low limit; the integration shows the change between the reference and the feedback unless it reaches the internal integral limit. When the trend between the reference and the feedback changes, it needs more time to offset the impact of continuous working and the integration will change with the trend. 1: Stop integral adjustment when the frequency reaches the upper and low limit. If the integration keeps stable, and the trend between the reference and the feedback changes, the integration will change with the trend quickly. LED tens: 0: The same with the setting direction; if the output of PID adjustment is different from the current running direction, the internal will output 0 forcedly. 1: Opposite to the setting direction LED hundreds: 0: Limit to A frequency LED thousands: 0: A+B frequency, buffer ACC/DEC is invalid for the main reference A frequency source 1: A+B frequency, buffer ACC/DEC is valid for the main reference A frequency source and the ACC/DEC is determined by time 4 of P08.04	0x0001	Ο
P09.14	Proportional gain at low frequency (Kp)	0.00-100.00	1.00	0
P09.15	PID command	0.0–1000.0s	0.0s	0

	of ACC/DEC						
	time						
P09.16	PID output	0.000–10.000s	0.000s	0			
1 00.10	filter time		0.0000	0			
P10 Grou	P10 Group Simple PLC and multi-step speed control						
		0: Stop after running once. The inverter has to be					
		commanded again after finishing a cycle.					
		1: Run at the final value after running once. After finish a					
P10.00	Simple PLC	signal, the inverter will keep the running frequency and	0	0			
P10.00	means	direction of the last run.	0	0			
		2: Cycle running. The inverter will keep on running until					
		receiving a stop command and then, the system will					
		stop.					
	Simple PLC	0: Power loss without memory					
P10.01	memory	1: Power loss memory; PLC record the running stage	0	0			
	selection	and frequency when power loss.					
	Multi-step			0			
P10.02	speed 0	100.0% of the frequency setting corresponds to the Max.	0.0%	0			
	The running	Frequency P00.03.					
P10.03	time of stage	When selecting simple PLC running, set P10.02–P10.33	0.0s	0			
	0	to define the running frequency and direction of all	0.00				
	Multi-step	stages.		0			
P10.04	speed 1	Note: The symbol of multi-step determines the running	0.0%	0			
	The running	direction of simple PLC. The negative value means		0			
P10.05	time of stage 1	reverse rotation.	0.0s	0			
	Multi-step	DEC time P10.28		_			
P10.06	speed 2	P10.04 (2 stages) P10.30	0.0%	0			
	The running	P10.02 P10.32					
P10.07	time of stage 2		0.0s	0			
	Multi-step	ACC time (2 stags) P10.06					
P10.08	speed 3		0.0%	0			
	The running	P10.08 P10.05 P10.07 P10.31 P10.33					
P10.09	time of stage 3	multi-step speeds are in the range offmax-fmax and it	0.0s	0			
	Multi-step	can be					
P10.10	speed 4	Goodrive20-UL series inverters can set 16 stages	0.0%	0			
	The running	speed, selected by the combination of multi-step					
P10.11	time of stage 4	terminals 1-4, corresponding to the speed 0 to speed	0.0s	0			
	Multi-step	15.					
P10.12	speed 5		0.0%	0			
	speed 5						

Goodrive20-UL inverters

Function Parameters

P10.13	The running time of stage 5	ſ	Output	frequer	icy]						0.0s	0
P10.14	Multi-step speed 6					J		[] []		t	0.0%	0
P10.15	The running time of stage 6								\@ 	-	0.0s	0
P10.16	Multi-step speed 7	Terminal 1	ON (ON DN	0N 0		N ON	οN	ON ON	t t	0.0%	0
P10.17	The running time of stage 7	Terminal 3		ĻГ	ON	1 ¦		ON		t	0.0s	0
P10.18	Multi-step speed 8	Terminal 4	inal 1	– terr	ninal '				minal	•	0.0%	0
P10.19	The running time of stage 8	4=OFF, the P00.06 or F	frequ	uency	input	mann	er is s	selecte	ed via		0.0s	0
P10.20	Multi-step speed 9	terminal 3= multi-step w	term	inal 4	termi	nals a	ren't o	off, it r	uns at	t	0.0%	0
P10.21	The running time of stage 9	value, high- input. Selec	spee	ed pul	se, PL	C, co	nmun	icatio	n frequ	0	0.0s	0
P10.22	Multi-step speed 10	combination and termina	n cod							ll 3,	0.0%	0
P10.23	The running time of stage 10	The start-up determined between ter	by fu	unctio	n cod	e P00	06, th	e rela	tionsh	•	0.0s	0
P10.24	Multi-step speed 11	terminals ar	nd m OFF	ulti-st ON	ep spe OFF	ed is ON	as fol OFF	lowing ON	: OFF	ON	0.0%	0
P10.25	The running time of stage 11		OFF	OFF	ON OFF	ON OFF	OFF	OFF	ON ON	ON ON	0.0s	0
P10.26	Multi-step speed 12	Terminal 4 (OFF 0	OFF	OFF 2	OFF 3	OFF 4	OFF 5	OFF 6	OFF	0.0%	0
P10.27	The running time of stage	Terminal 1	OFF	ON	OFF	ON	OFF	ON	OFF	ON	0.0s	0
P10.28	12 Multi-step		OFF OFF	OFF OFF	ON OFF	ON OFF	OFF ON	OFF ON	ON ON	ON ON	0.0%	0
1 10.20	speed 13	Terminal 4	ON	ON	ON	ON	ON	ON	ON	ON	0.070	Ŭ
P10.29	The running time of stage	step Setting rand	8 ne of	9 P10 (10 2n 1c	11 n<17)	12 · -100	13	14 0.0%	15	0.0s	0
P10.30	13 Multi-step speed 14	Setting rang	•							(min)	0.0%	0

Goodrive20-UL inverters

Function Parameters

P10.31	The running time of stage 14									0.0s	0				
P10.32	Multi-step speed 15									0.0%	0				
P10.33	The running time of stage 15									0.0s	0				
P10.34	Simple PLC 0–7 stage ACC/DEC time selection									0x0000	0				
		Below is Functio n code		ailed in: ry bit	structio Step	ACC/ DEC 0	ACC/ DEC 1	ACC/ DEC 2	ACC/ DEC 3						
	Simple PLC						BIT1	BIT0	0	00	01	10	11		
				BIT3	BIT2	1	00	01	10	11					
			BIT5	BIT4	2	00	01	10	11						
					P10.34	BIT7	BIT6	3	00	01	10	11			
		P10.34	BIT9	BIT8	4	00	01	10	11						
			BIT11	BIT10	5	00	01	10	11						
P10.35	8–15 stage ACC/DEC		BIT13	BIT12	6	00	01	10	11	0x0000	0				
	time selection		BIT15	BIT14	7	00	01	10	11						
			BIT1	BIT0	8	00	01	10	11						
			BIT3	BIT2	9	00	01	10	11						
			BIT5	BIT4	10	00	01	10	11						
		P10.35	BIT7	BIT6	11	00	01	10	11						
			BIT9	BIT8	12	00	01	10	11						
			BIT11	BIT10	13	00	01	10	11						
			BIT13	BIT12	14	00	01	10	11						

		BIT15 BIT14 15 00 01 10 11		
		After the users select the corresponding ACC/DEC time,		
		the combining 16 binary bit will change into decimal bit,		
		and then set the corresponding function codes.		
		Setting range: -0x0000–0xFFFF		
		0: Restart from the first stage; stop during running		
		(cause by the stop command, fault or power loss), run		
		from the first stage after restart.		
P10.36	PLC restart	1: Continue to run from the stop frequency; stop during	0	0
1 10.00	mode	running (cause by stop command and fault), the inverter	0	•
		will record the running time automatically, enter into the		
		stage after restart and keep the remaining running at the		
		setting frequency.		
		0: Seconds; the running time of all stages is counted by		
P10.37	Multi-step time	second	0	0
F10.37	unit selection	1: Minutes; the running time of all stages is counted by	0	0
		minute		
P11 Grou	p Protective	e parameters		-
		0x00–0x11		
		LED ones:		
	Phase loss protection	0: Input phase loss protection disable		
P11.00		1: Input phase loss protection enable	0x10	0
		LED tens:		
		0: Output phase loss protection disable		
		1: Output phase loss protection enable		
	Frequency-de			
P11.01	creasing at	0: Enabled	0	0
	sudden power	1: Disabled	Ű	-
	loss			
		Setting range: 0.00Hz/s–P00.03 (the Max. frequency)		
		After the power loss of the grid, the bus voltage drops to		
		the sudden frequency-decreasing point, the inverter		
	Frequency	begin to decrease the running frequency at P11.02, to		
P11.02	decreasing	make the inverter generate power again. The returning	10.00	0
r"11.02	ratio at sudden	power can maintain the bus voltage to ensure a rated	Hz/s	0
	power loss	running of the inverter until the recovery of power.		
		Voltage degree 220V 460V		
		Frequency-decreasing 260V 530V		
		point at sudden power loss		

-	-			
		Note: 1. Adjust the parameter properly to avoid the stopping caused by inverter protection during the switching of the grid. 2. Prohibit the input phase protection to enable this function.		
P11.03	Overvoltage stall protection	0: Disabled 1: Enabled Output Overvoltage amai point Output frequency Time	1	0
P11.04	Overvoltage stall voltage	120–150% (standard bus voltage) (460V) 120–150% (standard bus voltage) (220V)	120% 115%	0
P11.05	protection Current limit action	The actual increasing ratio is less than the ratio of output frequency because of the big load during ACC running.	0x01	0
P11.06	Automatic current limit level	It is necessary to take measures to avoid overcurrent fault and the inverter trips. During the running of the inverter, this function will	160.0%	0
P11.07	The decreasing ratio during current limit	detect the output current and compare it with the limit level defined in P11.06. If it exceeds the level, the inverter will run at stable frequency in ACC running, or the inverter will derate to run during the constant running. If it exceeds the level continuously, the output frequency will keep on decreasing to the lower limit. If the output current is detected to be lower than the limit level, the inverter will accelerate to run.	10.00 Hz/s	٥

		2: current limit is invalid during constant speed		
		Setting range of P11.05: 0x00–0x12		
		Setting range of P11.06: 50.0–200.0%		
		Setting range of P11.07: 0.00–50.00Hz/s		
	Overload	The output current of the inverter or the motor is above		
D14.00	pre-alarm of	P11.09 and the lasting time is beyond P11.10, overload	0x000	0
P11.08	the motor/	pre-alarm will be output.	0x000	0
	inverter	Output current		
P11.09	Overload pre-alarm test level	Overload pre-slarm point	150%	0
P11.10	Overload pre-alarm detection time	V, R01, R02 V, R01, R02 V, R01, R02 Setting range of P11.08: Enable and define the overload pre-alarm of the inverter or the motor. Setting range: 0x000–0x131 LED ones: 0: Overload pre-alarm of the motor, comply with the rated current of the motor 1: Overload pre-alarm of the inverter, comply with the rated current of the inverter LED tens: 0: The inverter continues to work after underload pre-alarm 1: The inverter continues to work after underload pre-alarm 2: The inverter continues to work after underload fault 2: The inverter stops to run after overload fault 3. The inverter stops when overloading or underloading. LED hundreds : 0: Detection all the time 1: Detection in constant running Setting range of P11.09: P11.11–200%	1.0s	0

P11.11 Detection level of the underload pre-alarm If the inverter current or the output current is lower than P11.11, and its lasting time is beyond P11.12, the inverter will output underload pre-alarm. Setting range of P11.11: 0–P11.09 Setting range of P11.12: 0.1–3600.0s 50%	0
P11.12 Detection time of the underload Setting range of P11.11: 0–P11.09 Setting range of P11.12: 0.1–3600.0s 1.0s	0
P11.13 Votput P11.13 Votput terminal action during fault LED ones: 0: Action under fault undervoltage LED tens: 0: Action during the automatic reset 1: No action during the automatic reset	0
P11.14 Speed deviation detection detection detection time. 10.0%	0
P11.15 Speed deviation detection time Speed deviation detection time Set detection tit, tit, tit, tit, tit, tit, tit, tit,	0
P11.16 Automatic frequency-d ecreasing at voltage drop	0
P13 Group Control parameters of SM	
Braking After the inverter starts, when P01.00=0, set P13.14 to P13.13 current of non-zero value and begin short circuit braking. 0.0% short circuit After the inverter stops, when the operation frequency is 0.0%	0

P13.14	Braking retention time of starting short circuit	less than P01.09, set P13.15 to non-zero value and begin stopping short-circuit braking and then DC braking. Setting range of P13.13: 0.0–150.0% (inverters) Setting range of P13.14: 0.00–50.00s	0.00s	0
P13.15	Braking retention time of stopping short circuit		0.00s	0
P14 Grou	up Serial com	munication		
P14.00	local communicatio n address	Setting range: 1–247 When the master is writing the frame, the communication address of the slave is set to 0; the broadcast address is the communication address. All slaves on the MODBUS fieldbus can receive the frame, but the salve doesn't answer. The communication address of the inverter is unique in the communication net. This is the fundamental for the point to point communication between the upper monitor and the inverter. Note: The address of the slave cannot set to 0.	1	0
P14.01	Communicatio n baud ratio	Set the digital transmission speed between the upper monitor and the inverter. 0: 1200BPS 1: 2400BPS 2: 4800BPS 3: 9600BPS 4: 19200BPS 5: 38400BPS 6: 57600BPS Note: The baud rate between the upper monitor and the inverter must be the same. Otherwise, the communication is not applied. The bigger the baud rate, the quicker the communication speed.	4	0
P14.02	Digital bit checkout	The data format between the upper monitor and the inverter must be the same. Otherwise, the communication is not applied. 0: No check (N,8,1) for RTU 1: Even check (E,8,1) for RTU 2: Odd check (O,8,1) for RTU	1	0

00000000		•	unouon r u	amotoro
		3: No check (N,8,2) for RTU		
		4: Even check (E,8,2) for RTU		
		5: Odd check (O,8,2) for RTU		
		6: No check (N,7,1) for ASCII		
		7: Even check (E,7,1) for ASCII		
		8: Odd check (O,7,1) for ASCII		
		9: No check (N,7,2) for ASCII		
		10: Even check (E,7,2) for ASCII		
		11: Odd check (O,7,2) for ASCII		
		12: No check (N,8,1) for ASCII		
		13: Even check (E,8,1) for ASCII		
		14: Odd check (O,8,1) for ASCII		
		15: No check (N,8,2) for ASCII		
		16: Even check (E,8,2) for ASCII		
		17: Odd check (O,8,2) for ASCII		
		0–200ms		
	Communicatio n answer delay	It means the interval time between the time the inverter		
		receives the data and the time it sends it to the upper		
		monitor. If the answer delay is shorter than the system		
P14.03		processing time, then the answer delay time is the	5	0
		system processing time, if the answer delay is longer		
		than the system processing time, then after the system		
		deal with the data, waits until achieving the answer delay		
		time to send the data to the upper monitor.		
		0.0 (invalid),0.1–60.0s		
		When the function code is set as 0.0, the communication		
	Communicatio	overtime parameter is invalid.		
P14.04	n overtime	When the function code is set as non-zero, if the interval	0.0s	0
	fault time	time between two communications exceeds the		
		communication overtime, the system will report "485		
		communication faults" (CE).		
		0: Alarm and stop freely		
	Transmission	1: No alarm and continue to run		
P14.05	fault	2: No alarm and stop according to the stop means (only	0	0
1 14.00	processing	under the communication control)	Ū	0
	processing	3: No alarm and stop according to the stop means		
		(under all control modes)		
		0x00–0x11		
P14.06	Communicatio	LED ones:	0x00	0
. 14.00	n processing	0: Write with response: the inverter will respond to all	0,00	-
		reading and writing commands of the upper monitor.		

		1: Write without response: the inverter only responds to	
		the reading command of the upper monitor. The	
		communication efficiency can be increased in this mode.	
		LED tens: (reserved)	
		0: Communication encrypting is invalid	
		1: Communication encrypting is valid	
P14.07	Reserved		•
P14.08	Reserved		•
P17 Grou	up Monitorin	g function	
P17.00	Setting frequency	Display current set frequency of the inverter Range: 0.00Hz–P00.03	•
P17.01	Output frequency	Display current output frequency of the inverter Range: 0.00Hz–P00.03	•
P17.02	Ramp reference frequency	Display current ramp reference frequency of the inverter Range: 0.00Hz–P00.03	•
P17.03	Output voltage	Display current output voltage of the inverter Range: 0–1200V	•
P17.04	Output current	Display current output current of the inverter Range: 0.0–5000.0A	•
P17.05	Motor speed	Display the rotation speed of the motor. Range: 0–65535RPM	•
P17.06	Torque current	Display current torque current of the inverter Range: 0.0–5000.0A	•
P17.07	Magnetized current	Display current magnetized current of the inverter Range: 0.0–5000.0A	•
P17.08	Motor power	Display current power of the motor. Setting range: -300.0%–300.0% (the rated current of the motor)	•
P17.09	Output torque	Display the current output torque of the inverter. Range: -250.0–250.0%	•
P17.10	The motor frequency	Evaluate the motor rotor frequency on open loop vector Range: 0.00– P00.03	•

	evaluation		
P17.11	DC bus voltage	Display current DC bus voltage of the inverter Range: 0.0–2000.0V	•
P17.12	Switch input terminals state	Display current Switch input terminals state of the inverter Range: 0000–00FF	●
P17.13	Switch output terminals state	Display current Switch output terminals state of the inverter Range: 0000–000F	•
P17.14	Digital adjustment	Display the adjustment through the keypad of the inverter. Range: 0.00Hz–P00.03	٠
P17.15	Torque reference	Display the torque reference, the percentage to the current rated torque of the motor. Setting range: -300.0%300.0% (the rated current of the motor)	•
P17.16	Linear speed	Display the current linear speed of the inverter. Range: 0–65535	•
P17.17	Reserved		•
P17.18	Counting value	Display the current counting number of the inverter. Range: 0–65535	•
P17.19	AI1 input voltage	Display analog Al1 input signal Range: 0.00–10.00V	•
P17.20	Al2 input voltage	Display analog Al2 input signal Range: 0.00–10.00V	•
P17.21	AI3 input voltage	Display analog Al2 input signal Range: -10.00–10.00V	•
P17.22	HDI input frequency	Display HDI input frequency Range: 0.00–50.00kHz	•
P17.23	PID reference value	Display PID reference value Range: -100.0–100.0%	•

P17.24	PID feedback value	Display PID feedback value Range: -100.0–100.0%	•
P17.25	Power factor of the motor	Display the current power factor of the motor. Range: -1.00–1.00	•
P17.26	Current running time	Display the current running time of the inverter. Range: 0–65535min	•
P17.27	Simple PLC and the current stage of the multi-step speed	Display simple PLC and the current stage of the multi-step speed Range: 0–15	•
P17.28	ASR controller output	The percentage of the rated torque of the relative motor, display ASR controller output Range: -300.0%–300.0% (the rated motor current)	•
P17.29	Reserved		•
P17.30	Reserved		•
P17.31	Reserved		•
P17.32	Magnetic flux linkage	Display the magnetic flux linkage of the motor. Range: 0.0%–200.0%	•
P17.33	Exciting current reference	Display the exciting current reference in the vector control mode. Range: -3000.0–3000.0A	•
P17.34	Torque current reference	Display the torque current reference in the vector control mode. Range: -3000.0–3000.0A	•
P17.35	AC input current	Display the input current in AC side. Range: 0.0–5000.0A	•
P17.36	Output torque	Display the output torque. Positive value is in the electromotion state, and negative value is in the power generating state. Range: -3000.0Nm-3000.0Nm	•

Goodrive20-UL inverters

P17.37	Motor overload counting	0–100 (OL1 when 100)	•
P17.38	PID output	Display PID output -100.00–100.00%	•
P17.39	Reserved		٠

6.1 Maintenance intervals

If installed in an appropriate environment, the inverter requires very little maintenance. The table lists the routine maintenance intervals recommended by INVT.

Cł	necking part	Checking item	Checking method	Criterion
Ambient environment		Check the ambient temperature, humidity and vibration and ensure there is no dust, gas, oil fog and water drop.	Visual examination and instrument test	Conforming to the manual
		Ensure there are no tools or other foreign or dangerous objects	Visual examination	There are no tools or dangerous objects.
	Voltage	Ensure the main circuit and control circuit are normal.	Measurement by millimeter	Conforming to the manual
	Keypad	Ensure the display is clear enough	Visual examination	The characters are displayed normally.
		Ensure the characters are displayed totally	Visual examination	Conforming to the manual
		Ensure the screws are tightened scurrility	Tighten up	NA
		Ensure there is no distortion, crackles, damage or color-changing caused by overheating and aging to the machine and insulator.	Visual examination	NA
Main circuit	For public use	Ensure there is no dust and dirtiness	Visual examination	NA Note: if the color of the copper blocks change, it does not mean that there is something wrong with the features.
	The lead of the conductors	Ensure that there is no distortion or color-changing of the conductors caused	Visual examination	NA

Cł	necking part	Checking item	Checking method	Criterion
		by overheating.		
		Ensure that there are no crackles or color-changing of the protective layers.	Visual examination	NA
	Terminals seat	Ensure that there is no damage	Visual examination	NA
		Ensure that there is no weeping, color-changing, crackles and cassis expansion.	Visual examination	NA
	Filter capacitors	Ensure the safety valve is in the right place.	Estimate the usage time according to the maintenance or measure the static capacity.	NA
		If necessary, measure the static capacity.	Measure the capacity by instruments.	The static capacity is above or equal to the original value x 0.85.
		Ensure whether there is replacement and splitting caused by overheating.	Smelling and visual examination	NA
	Resistors	Ensure that there is no offline.	Visual examination or remove one ending to coagulate or measure with multimeters	The resistors are in ±10% of the standard value.
	Transformers and reactors	Ensure there is no abnormal vibration, noise and smelling,	Hearing, smelling and visual examination	NA
	Electromagnetism	Ensure whether there is vibration noise in the workrooms.	Hearing	NA
	contactors and relays	Ensure the contact is good enough.	Visual examination	NA
Control circuit	PCB and plugs	Ensure there are no loose screws and contactors.	Fasten up	NA

Cł	ecking part	Checking item	Checking method	Criterion
		Ensure there is no smelling and color-changing.	Smelling and visual examination	NA
		Ensure there are no crackles, damage distortion and rust.	Visual examination	NA
		Ensure there is no weeping and distortion to the capacitors.	Visual examination or estimate the usage time according to the maintenance information	NA
		Estimate whether there is abnormal noise and vibration. Estimate there is no losses	Hearing and Visual examination or rotate with hand	Stable rotation
Cooling system	Cooling fan	screw. Ensure there is no color-changing caused by overheating.	Tighten up Visual examination or estimate the usage time according to the maintenance information	NA
	Ventilating duct	Ensure whether there is stuff or foreign objection in the cooling fan, air vent.	Visual examination	NA

6.1.1 Cooling fan

The inverter's cooling fan has a minimum life span of 25,000 operating hours. The actual life span depends on the inverter usage and ambient temperature.

The operating hours can be found through P07.14 (accumulative hours of the inverter).

Fan failure can be predicted by the increasing noise from the fan bearings. If the inverter is operated in a critical part of a process, fan replacement is recommended once these symptoms appear. Replacement fans are available from INVT.

 Read and follow the instructions in chapter Safety Precautions. Ignoring the instructions would cause physical injury or death, or damage to the equipment.

1. Stop the inverter and disconnect it from the AC power source and wait for at least the time designated on the inverter.

2. Lever the fan holder off the inverter frame with a screwdriver and lift the hinged fan holder slightly upward from its front edge. 3. Disconnect the fan cable.

- 4. Remove the fan holder from the hinges.
- 5. Install the new fan holder including the fan in reverse order.
- 6. Restore power.

6.1.2 Capacitors

Reforming the capacitors

The DC bus capacitors must be reformed according to the operation instruction if the inverter has been stored for a long time. The storing time is counted from the producing date other than the delivery data which has been marked in the serial number of the inverter.

Time	Operational principle
Storing time less than 1 year	Operation without charging
Storing time 1-2 years	Connect with the power for 1 hour before first ON command
Storing time 2-3 years	Use power surge to charge for the inverter • Add 25% rated voltage for 30 minutes • Add 50% rated voltage for 30 minutes • Add 75% rated voltage for 30 minutes • Add 100% rated voltage for 30 minutes
Storing time more than 3 years	Use power surge to charge for the inverter • Add 25% rated voltage for 2 hours • Add 50% rated voltage for 2 hours • Add 75% rated voltage for 2 hours • Add 100% rated voltage for 2 hours

The method of using power surge to charge for the inverter:

The right selection of power surge depends on the supply power of the inverter. Single phase 220V AC/2A power surge applied to the inverter with single/three-phase 220V AC as its input voltage. The inverter with single/three-phase 220V AC as its input voltage can apply Single phase 220V AC/2A power surge (L+ to R and N to S or T). All DC bus capacitors charge at the same time because there is one rectifier.

High-voltage inverter needs enough voltage (for example, 460V) during charging. The small capacitor power (2A is enough) can be used because the capacitor nearly does not need current when charging.

Change electrolytic capacitors

Read and follow the instructions in chapter *Safety Precautions*. Ignoring the instructions may cause physical injury or death, or damage to the equipment.

Change electrolytic capacitors if the working hours of electrolytic capacitors in the inverter are above 35000. Please contact with the local INVT offices or dial our national service hotline (400-700-9997) for detailed operation.

6.1.3 Power cable

Read and follow the instructions in chapter Safety Precautions. Ignoring the instructions may cause physical injury or death, or damage to the equipment.

1. Stop the inverter and disconnect it from the power line. Wait for at least the time designated on the inverter.

- 2. Check the tightness of the power cable connections.
- 3. Restore power.

6.2 Fault solution

Only qualified electricians are allowed to maintain the inverter. Read the safety instructions in chapter Safety precautions before working on the inverter.

6.2.1 Alarm and fault indications

Fault is indicated by LEDs. See **Operation Procedure**. When **TRIP** light is on, an alarm or fault message on the panel display indicates abnormal inverter state. Using the information given in this chapter, most alarm and fault cause can be identified and corrected. If not, contact with the INVT office.

6.2.2 How to reset

The inverter can be reset by pressing the keypad key <u>STOP/RST</u>, through digital input, or by switching the power light. When the fault has been removed, the motor can be restarted.

6.2.3 Fault instruction and solution

Do as the following after the inverter fault:

1. Check to ensure there is nothing wrong with the keypad. If not, please contact with the local INVT office.

2. If there is nothing wrong, please check P07 and ensure the corresponding recorded fault parameters to confirm the real state when the current fault occurs by all parameters.

- 3. See the following table for detailed solution and check the corresponding abnormal state.
- 4. Eliminate the fault and ask for relative help.

5. Check to eliminate the fault and carry out fault reset to run the inverter.

Fault code	Fault type	Possible cause	Solutions
OC1	Over-current when	1. The acceleration or	1. Increase the ACC time
001	acceleration	deceleration is too fast.	2. Check the input power
OC2	Over-current when	2. The voltage of the grid is	3. Select the inverter with a
002	deceleration	too low.	larger power
		3. The power of the inverter is	4. Check if the load is short
		too low.	circuited (the grounding short
		4. The load transients or is	circuited or the wire short
		abnormal.	circuited) or the rotation is not
	Over-current when	5. The grounding is short	smooth.
OC3	constant speed	circuited or the output is	5. Check the output
	running	phase loss.	configuration.
		6. There is strong external	6. Check if there is strong
		interference.	interference.
		7. The overvoltage stall	7. Check the setting of relative
		protection is not open.	function codes.

Fault code	Fault type	Possible cause	Solutions
OV1	Over-voltage when acceleration		 Check the input power Check if the DEC time of the
OV2	Over-voltage when deceleration	1. The input voltage is abnormal.	load is too short or the inverter starts during the rotation of the
OV3	Over-voltage when constant speed running	 There is large energy feedback. No braking components. Braking energy is not open 	motor or it needs to increase the energy consumption components. 3. Install the braking components. 4. Check the setting of relative function codes.
UV	DC bus Under-voltage	 The voltage of the power supply is too low. The overvoltage stall protection is not open. 	 Check the input power of the supply line. Check the setting of relative function codes.
OL1	Motor overload	 The voltage of the power supply is too low. The motor setting rated current is incorrect. The motor stall or load transients is too strong. 	 Check the power of the supply line Reset the rated current of the motor Check the load and adjust the torque lift
OL2	Inverter overload	 The acceleration is too fast Reset the rotating motor The voltage of the power supply is too low. The load is too heavy. Close loop vector control, reverse direction of the code panel and long low-speed operation 	 Increase the ACC time Avoid the restarting after stopping. Check the power of the supply line Select an inverter with bigger power. Select a proper motor.
OL3	Electrical overload	The inverter will report overload pre-alarm according to the set value.	Check the load and the overload pre-alarm point.
SPI	Input phase loss	Phase loss or fluctuation of input R,S,T	 Check input power Check installation distribution
SPO	Output phase loss	U,V,W phase loss input (or serious asymmetrical three phase of the load)	 Check the output distribution Check the motor and cable

Fault code	Fault type	Possible cause	Solutions
			1. Refer to the overcurrent
OH1	Rectify overheat	1. Air duct jam or fan damage 2. Ambient temperature is too high.	2. Redistribute dredge the wind channel or change the fan 3. Low the ambient temperature
OH2	IGBT overheat	 The time of overload running is too long. 	 Check and reconnect Change the power Change the power unit Change the main control panel
EF	External fault	SI external fault input terminals action	Check the external device input
CE	Communication error	 The baud rate setting is incorrect. Fault occurs to the communication wiring. The communication address is wrong. There is strong interference to the communication. 	 Set proper baud rate Check the communication connection distribution Set proper communication address. Chang or replace the connection distribution or improve the anti-interference capability.
ltE	Current detection fault	 The connection of the control board is not good Assistant power is bad Hoare components is broken The modifying circuit is abnormal. 	 Check the connector and repatch Change the Hoare Change the main control panel
tE	Autotuning fault	 The motor capacity does not comply with the inverter capability The rated parameter of the motor does not set correctly. The offset between the parameters from autotune and the standard parameter is huge Autotune overtime 	 Change the inverter mode Set the rated parameter according to the motor name plate Empty the motor load. Check the motor connection and set the parameter. Check if the upper limit frequency is above 2/3 of the rated frequency.
EEP	EEPROM fault	1. Error of controlling the write and read of the parameters	1. Press STOP/RST to reset 2. Change the main control

Fault code	Fault type	Possible cause	Solutions
		2. Damage to EEPROM	panel
PIDE	PID feedback fault	1. PID feedback offline 2. PID feedback source disappear	 Check the PID feedback signal Check the PID feedback source
bCE	Braking unit fault	 Braking circuit fault or damage to the braking pipes The external braking resistor is not sufficient 	 Check the braking unit and , change new braking pipe Increase the braking resistor
dEu	Velocity deviation fault	The load is too heavy or stalled.	 Check the load and ensure it is normal. Increase the detection time. Check whether the control parameters are normal.
STo	Maladjustment fault	 The control parameters of the synchronous motors not set properly. The autoturn parameter is not right. The inverter is not connected to the motor. 	 Check the load and ensure it is normal. Check whether the control parameter is set properly or not. Increase the maladjustment detection time.
END	Time reach of factory setting	The actual running time of the inverter is above the internal setting running time.	Ask for the supplier and adjust the setting running time.
PCE	Keypad communication error	The keypad is not in good connection or offline; The keypad cable is too long and there is strong interference; Part of the communication circuits of the keypad or main board have fault.	Check the keypad cable and and ensure it is normal; Check the environment and eliminate the interference source; Change hardware and ask for maintenance service.
UPE	Parameter upload error	The keypad is not in good connection or offline; The keypad cable is too long and there is strong interference; Part of the communication circuits of the keypad or main board have fault.	Check the environment and eliminate the interference source; Change hardware and ask for maintenance service; Change hardware and ask for maintenance service.
DNE	Parameter download error	The keypad is not in good connection or offline;	Check the environment and eliminate the interference

Fault code	Fault type	Possible cause	Solutions
		The keypad cable is too long and there is strong interference; Data storage error in keypad	source; Change hardware and ask for maintenance service; Backup data in the keypad again
ETH1	Grounding shortcut fault 1	1. The output of the inverter is short circuited with the ground	1. Check if the connection of
ETH2	Grounding shortcut fault 2	 There is fault in the current detection circuit There is a great difference between the actual motorpower setting and the inverter power 	the motor is normal or not 2. Change the hoare 3. Change the main control panel 4. Reset the correctmotor parameter
LL	Electronic underload fault	The inverter will report the underload pre-alarm according to the set value.	Check the load and the underload pre-alarm point.

6.2.4 Other states

Fault code	Fault type	Possible cause	Solutions
PoFF	System power off	System power off or low DC voltage	Check the grid

7 Communication Protocol

7.1 Brief instruction to Modbus protocol

Modbus protocol is a software protocol and common language which is applied in the electrical controller. With this protocol, the controller can communicate with other devices via network (the channel of signal transmission or the physical layer, such as RS485). And with this industrial standard, the controlling devices of different manufacturers can be connected to an industrial network for the convenient of being monitored.

There are two transmission modes for Modbus protocol: ASCII mode and RTU (Remote Terminal Units) mode. On one Modbus network, all devices should select same transmission mode and their basic parameters, such as baud rate, digital bit, check bit, and stopping bit should have no difference.

Modbus network is a controlling network with single-master and multiple slaves, which means that there is only one device performs as the master and the others are the slaves on one Modbus network. The master means the device which has active talking right to sent message to Modbus network for the controlling and inquiring to other devices. The slave means the passive device which sends data message to the Modbus network only after receiving the controlling or inquiring message (command) from the master (response). After the master sends message, there is a period of time left for the controlled or inquired slaves to response, which ensure there is only one slave sends message to the master at a time for the avoidance of singles impact.

Generally, the user can set PC, PLC, IPC and HMI as the masters to realize central control. Setting certain device as the master is a promise other than setting by a bottom or a switch or the device has a special message format. For example, when the upper monitor is running, if the operator clicks sending command bottom, the upper monitor can send command message actively even it can not receive the message from other devices. In this case, the upper monitor is the master. And if the designer makes the inverter send the data only after receiving the command, then the inverter is the slave.

The master can communicate with any single slave or with all slaves. For the single-visiting command, the slave should feedback a response message; for the broadcasting message from the master, the slave does not need to feedback the response message.

7.2 Application of the inverter

The Modbus protocol of the inverter is RTU mode and the physical layer is 2-wire RS485.

7.2.1 2-wire RS485

The interface of 2-wire RS485 works on semiduplex and its data signal applies differential transmission which is called balance transmission, too. It uses twisted pairs, one of which is defined as A (+) and the other is defined as B (-). Generally, if the positive electrical level between sending drive A and B is among +2—+6V, it is logic "1", if the electrical level is among -2V—6V; it is logic"0".

485+ on the terminal board corresponds to A and 485- to B.

Communication baud rate means the binary bit number in one second. The unit is bit/s (bps). The higher the baud rate is, the quicker the transmission speed is and the weaker the anti-interference is. If the twisted pairs of 0.56mm (24AWG) is applied as the communication cables, the Max. Transmission

distance is as below:

Baud	Max.transmissio	Baud	Max.transmissio	Baud	Max.transmissio	Baud	Max.transmissio
rate	n distance						
2400		4800		9600		1920	
	1800m		1200m		800m	0	600m
BPS		BPS		BPS		BPS	

It is recommended to use shield cables and make the shield layer as the grounding wires during RS485 remote communication.

In the cases with less devices and shorter distance, it is recommended to use 120Ω terminal resistor as the performance will be weakened if the distance increase even though the network can perform well without load resistor.

7.2.1.1 Single application

Figure 1 is the site Modbus connection figure of single inverter and PC. Generally, the computer does not have RS485 interface, the RS232 or USB interface of the computer should be converted into RS485 by converter. Connect the A terminal of RS485 to the 485+ terminal of the inverter and B to the 485 terminal. It is recommended to use the shield twisted pairs. When applying RS232-RS485 converter, if the RS232 interface of the computer is connected to the RS232 interface of the converter, the wire length should be as short as possible within the length of 15m. It is recommended to connect the RS232-RS485 converter to the computer directly. If using USB-RS485 converter, the wire should be as short as possible, too.

Select a right interface to the upper monitor of the computer (select the interface of RS232-RS485 converter, such as COM1) after the wiring and set the basic parameters such as communication baud rate and digital check bit to the same as the inverter.

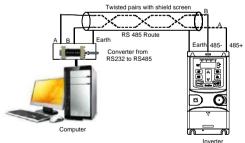


Figure 1 RS485 physical connection in single application

7.2.1.2 Multi-applications

In real multi-applications, the chrysanthemum connection and star connection are commonly used. Chrysanthemum chain connection is required in the RS485 industrial fieldbus standards. The two ends are connected to terminal resistors of 120Ω which is shown as figure 2.

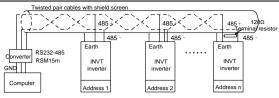


Figure 2 Chrysanthemum connection applications

Figure 3 is the star connection. Terminal resistor should be connected to the two devices which have the longest distance. (1# and 15#device)

It is recommended to use shield cables in multiple connection. The basic parameter of the devices, such as baud rate and digital check bit in RS485 should be the same and there should be no repeated address.

7.2.2 RTU mode

7.2.2.1 RTU communication frame format

If the controller is set to communicate by RTU mode in Modbus network every 8bit byte in the message includes two 4Bit hex characters. Compared with ACSII mode, this mode can send more data at the same baud rate.

Code system

1 start bit

7 or 8 digital bit, the minimum valid bit can be sent firstly. Every 8 bit frame includes two hex characters (0...9, A...F)

- 1 even/odd check bit . If there is no checkout, the even/odd check bit is inexistent.
- · 1 end bit (with checkout), 2 Bit (no checkout)

Error detection field

• CRC

The data format is illustrated as below:

11-bit character frame (BIT1-BIT8 are the digital bits)

Start bit	BIT1	BIT2	BIT3	BIT4	BIT5	BIT6	BIT7	BIT8	Check bit	End bit	
-----------	------	------	------	------	------	------	------	------	--------------	---------	--

10-bit character frame (BIT1-BIT7 are the digital bits)

ſ	Start bit	BIT1	BIT2	BIT3	BIT4	BIT5	BIT6	BIT7	Check	End bit
L	Otart bit	DITT	DITZ	DITO	DITT	DITO	DITO	DIT	bit	LING DR

In one character frame, the digital bit takes effect. The start bit, check bit and end bit is used to send the digital bit right to the other device. The digital bit, even/odd checkout and end bit should be set as the same in real application.

The Modbus minimum idle time between frames should be no less than 3.5 bytes. The network device is detecting, even during the interval time, the network bus. When the first field (the address field) is received, the corresponding device decodes next transmitting character. When the interval time is at least 3.5 byte, the message ends.

The whole message frame in RTU mode is a continuous transmitting flow. If there is an interval time (more than 1.5 bytes) before the completion of the frame, the receiving device will renew the uncompleted message and suppose the next byte as the address field of the new message. As such, if the new message follows the previous one within the interval time of 3.5 bytes, the receiving device will deal with it as the same with the previous message. If these two phenomena all happen during the transmission, the CRC will generate a fault message to respond to the sending devices.

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	Communication address: 0-247 (decimal system) (0 is the broadcast address)
CMD	03H: read slave parameters 06H: write slave parameters
DATA (N-1) DATA (0)	The data of 2 x N bytes are the main content of the communication as well as the core of data exchanging
CRC CHK low bit	Detection value: CRC (16 BIT)
CRC CHK high bit	
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

The standard structure of RTU frame:

7.2.2.2 RTU communication frame error checkout

Various factors (such as electromagnetic interference) may cause error in the data transmission. For example, if the sending message is logic "1", A-B potential difference on RS485 should be 6V, but in reality, it may be -6V because of electromagnetic interference, and then the other devices take the sent message as logic "0". If there is no error checkout, the receiving devices will not find the message is wrong and they may give incorrect response which cause serious result. So the checkout is essential to the message.

The theme of checkout is that: the sender calculate the sending data according to a fixed formula, and then send the result with the message. When the receiver gets this message, they will calculate anther result according to the same method and compare it with the sending one. If two results are the same, the message is correct. If not, the message is incorrect.

The error checkout of the frame can be divided into two parts: the bit checkout of the byte and the whole

data checkout of the frame (CRC check).

Bit checkout of the byte

The user can select different bit checkouts or non-checkout, which impacts the check bit setting of each byte.

The definition of even checkout: add an even check bit before the data transmission to illustrate the number of "1" in the data transmission is odd number or even number. When it is even, the check byte is "0", otherwise, the check byte is "1". This method is used to stabilize the parity of the data.

The definition of odd checkout: add an odd check bit before the data transmission to illustrate the number of "1" in the data transmission is odd number or even number. When it is odd, the check byte is "0", otherwise, the check byte is "1". This method is used to stabilize the parity of the data.

For example, when transmitting "11001110", there are five "1" in the data. If the even checkout is applied, the even check bit is "1"; if the odd checkout is applied; the odd check bit is "0". The even and odd check bit is calculated on the check bit position of the frame. And the receiving devices also carry out even and odd checkout. If the parity of the receiving data is different from the setting value, there is an error in the communication.

CRC check

The checkout uses RTU frame format. The frame includes the frame error detection field which is based on the CRC calculation method. The CRC field is two bytes, including 16 figure binary values. It is added into the frame after calculated by transmitting device. The receiving device recalculates the CRC of the received frame and compares them with the value in the received CRC field. If the two CRC values are different, there is an error in the communication.

During CRC, 0 x FFFF will be stored. And then, deal with the continuous 6-above bytes in the frame and the value in the register. Only the 8Bit data in every character is effective to CRC, while the start bit, the end and the odd and even check bit is ineffective.

The calculation of CRC applies the international standard CRC checkout principles. When the user is editing CRC calculation, he can refer to the relative standard CRC calculation to write the required CRC calculation program.

Here provided a simple function of CRC calculation for the reference (programmed with C language): unsigned int crc_cal_value (unsigned char x data_value,unsigned char data_length)

```
{
int i;
unsigned int crc_value=0xffff;
while(data_length-)
{
    crc_value^= x data_value++;
        for(i=0;i<8;i++)
        {
        if(crc_value&0x0001)crc_value=(crc_value>>1)^0xa001;
            else crc_value=crc_value>>1;
            }
        return(crc_value);
```

}

In ladder logic, CKSM calculated the CRC value according to the frame with the table inquiry. The method is advanced with easy program and quick calculation speed. But the ROM space the program occupied is huge. So use it with caution according to the program required space.

7.3 RTU command code and communication data illustration

7.3.1 Command code: 03H

03H (correspond to binary 0000 0011), read N words (Word) (the Max. continuous reading is 16 words)

Command code 03H means that if the master read data from the inverter, the reading number depends on the "data number" in the command code. The Max. Continuous reading number is 16 and the parameter address should be continuous. The byte length of every data is 2 (one word). The following command format is illustrated by hex (a number with "H" means hex) and one hex occupies one byte.

The command code is used to read the working stage of the inverter.

For example, read continuous 2 data content from0004H from the inverter with the address of 01H (read the content of data address of 0004H and 0005H), the frame structure is as below:

START	T1-T2-T3-T4
ADDR	01H
CMD	03H
High bit of the start address	00H
Low bit of the start address	04H
High bit of data number	00H
Low bit of data number	02H
CRC low bit	85H
CRC high bit	CAH
END	T1-T2-T3-T4

RTU master command message (from the master to the inverter)

T1-T2-T3-T4 between START and END is to provide at least the time of 3.5 bytes as the leisure time and distinguish two messages for the avoidance of taking two messages as one message.

ADDR = 01H means the command message is sent to the inverter with the address of 01H and ADDR occupies one byte

CMD=03H means the command message is sent to read data from the inverter and CMD occupies one byte

"Start address" means reading data from the address and it occupies 2 bytes with the fact that the high bit is in the front and the low bit is in the behind.

"Data number" means the reading data number with the unit of word. If the "start address is 0004H and the "data number" is 0002H, the data of 0004H and 0005H will be read.

CRC occupies 2 bytes with the fact that the high bit is in the front and the low bit is in the behind.

RTU slave response message (from the inverter to the master)

Goodrive20-UL inverters

START	T1-T2-T3-T4
ADDR	01H
CMD	03H
Byte number	04H
Data high bit of address 0004H	13H
Data low bit of address 0004H	88H
Data high bit of address 0005H	00H
Data low bit of address 0005H	00H
CRC CHK low bit	7EH
CRC CHK high bit	9DH
END	T1-T2-T3-T4

The meaning of the response is that:

ADDR = 01H means the command message is sent to the inverter with the address of 01H and ADDR occupies one byte

CMD=03H means the message is received from the inverter to the master for the response of reading command and CMD occupies one byte

"Byte number" means all byte number from the byte (excluding the byte) to CRC byte (excluding the byte). 04 means there are 4 byte of data from the "byte number" to "CRC CHK low bit", which are "digital address 0004H high bit", "digital address 0004H low bit", "digital address 0005H high bit" and "digital address 0005H low bit".

There are 2 bytes stored in one data with the fact that the high bit is in the front and the low bit is in the behind of the message, the data of data address 0004H is 1388H, and the data of data address 0005H is 0000H.

CRC occupies 2 bytes with the fact that the high bit is in the front and the low bit is in the behind.

7.3.2 Command code: 06H

06H (correspond to binary 0000 0110), write one word (Word)

The command means that the master write data to the inverter and one command can write one data other than multiple dates. The effect is to change the working mode of the inverter.

For example, write 5000 (1388H) to 0004H from the inverter with the address of 02H, the frame structure is as below:

START	T1-T2-T3-T4
ADDR	02H
CMD	06H
High bit of writing data address	00H
Low bit of writing data address	04H
High bit of data content	13H
Low bit of data content	88H
CRC CHK low bit	C5H
CRC CHK high bit	6EH

RTU master command message (from the master to the inverter)

Goodrive20-UL inverters

END

RTU slave response message (from the inverter to the master)

RIU slave response message (fro	m the inverter to the master)
START	T1-T2-T3-T4
ADDR	02H
CMD	06H
High bit of writing data address	00H
Low bit of writing data address	04H
High bit of data content	13H
Low bit of data content	88H
CRC CHK low bit	C5H
CRC CHK high bit	6EH
END	T1-T2-T3-T4

T1-T2-T3-T4

Note: section 10.2 and 10.3 mainly describe the command format, and the detailed application will be mentioned in 10.8 with examples.

7.3.3 Command code 08H for diagnosis

Meaning of sub-function codes

Sub-function Code	Description
0000	Return to inquire information data

For example: The inquiry information string is the same as the response information string when the loop detection to address 01H of driver is carried out.

The RTU request command is:

START	T1-T2-T3-T4
ADDR	01H
CMD	08H
High bit of sub-function code	00H
Low bit of sub-function code	00H
High bit of data content	12H
Low bit of data content	ABH
CRC CHK low bit	ADH
CRC CHK high bit	14H
END	T1-T2-T3-T4

The RTU response command is:

START	T1-T2-T3-T4
ADDR	01H
CMD	08H
High bit of sub-function code	00H
Low bit of sub-function code	00H
High bit of data content	12H

Low bit of data content	ABH
CRC CHK low bit	ADH
CRC CHK high bit	14H
END	T1-T2-T3-T4

7.3.4 Command code: 10H, continuous writing

Command code 10H means that if the master writes data to the inverter, the data number depends on the "data number" in the command code. The Max. continuous reading number is 16.

For example, write 5000 (1388H) to 0004H of the inverter whose slave address is 02H and 50 (0032H) to 0005H, the frame structure is as below:

The RTU request command is:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	02H
CMD	10H
High bit of write data	00H
Low bit of write data	04H
High bit of data number	00H
Low bit of data number	02H
Byte number	04H
High bit of data 0004H	13H
Low bit of data 0004H	88H
High bit of data 0005H	00H
Low bit of data 0005H	32H
Low bit of CRC	C5H
High bit of CRC	6EH
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

The RTU response command is:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	02H
CMD	10H
MSB of write data	00H
LSB of write data	04H
MSB of data number	00H
LSB of data number	02H
LSB of CRC	C5H
MSB of CRC	6EH
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

7.3.5 The definition of data address

The address definition of the communication data in this part is to control the running of the inverter and

get the state information and relative function parameters of the inverter.

7.3.5.1 The rules of parameter address of the function codes

The parameter address occupies 2 bytes with the high bit in the front and the low bit in the rear. The range of high and low byte are: high byte—00–ffH; low byte—00–ffH. The high byte is the group number before the radix point of the function code and the low byte is the number after the radix point. But both the high byte and the low byte should be changed into hex. For example P05.05, the group number before the radix point of the function code is 05, then the high bit of the parameter is 05, the number after the radix point 05, then the low bit of the parameter is 05, then the function code address is 0505H and the parameter address of P10.01 is 0A01H.

	Function code	Name	Description	Setting range	Default value	Modify	Serial No.
	P10.00	Simple PLC	0: Stop after running once 1: Run at the final value after running once 2: Cycle running	0 - 2	0	o	354.
\langle	P10.01	Simple PLC memory	0: Power loss without memory 1: Power loss with memory	0 - 1	0	o	355.

Note: P29 group is the factory parameter which cannot be read or changed. Some parameters cannot be changed when the inverter is in the running state and some parameters cannot be changed in any state. The setting range, unit and relative instructions should be paid attention to when modifying the function code parameters.

Besides, EEPROM is stocked frequently, which may shorten the usage time of EEPROM. For users, some functions are not necessary to be stocked on the communication mode. The needs can be met on by changing the value in RAM. Changing the high bit of the function code from 0 to 1 can also realize the function. For example, the function code P00.07 is not stocked into EEPROM. Only by changing the value in RAM can set the address to 8007H. This address can only be used in writing RAM other than reading. If it is used to read, it is an invalid address.

7.3.5.2 The address instruction of other function in Modbus

The master can operate on the parameters of the inverter as well as control the inverter, such as running or stopping and monitoring the working state of the inverter.

Function instruction	Address definition	Data meaning instruction	R/W characteristics
	2000H	0001H: forward running	
		0002H: reverse running	
		0003H: forward jogging	
Communication control command		0004H: reverse jogging	W
		0005H: stop	
		0006H: coast to stop (emergency stop)	
		0007H: fault reset	

Below is the parameter list of other functions

Function	tion Address Data meaning instruction		R/W
instruction definition		Data meaning instruction	characteristics
		0008H: jogging stop	
	2001H	Communication setting frequency	
	200111	(0-Fmax(unit: 0.01Hz))	w
	2002H	PID reference, range (0-1000, 1000	**
	200211	corresponds to 100.0%)	
	2003H	PID feedback, range (0-1000, 1000	w
	200311	corresponds to 100.0%)	**
		Torque setting value (-3000-3000, 1000	
	2004H	corresponds to the 100.0% of the rated	W
		current of the motor)	
	2005H	The upper limit frequency setting during	w
	200311	forward rotation (0-Fmax(unit: 0.01Hz))	vv
	2006H	The upper limit frequency setting during	w
	20000	reverse rotation (0-Fmax(unit: 0.01Hz))	vv
		The upper limit torque of electromotion	
	2007H	torque (0-3000, 1000 corresponds to the	W
		100.0% of the rated current of the motor)	
		The upper limit torque of braking torque	
The address of the	2008H	(0-3000, 1000 corresponds to the 100.0% of	W
communication		the rated current of the motor)	
setting value		Special control command word	
		Bit0-1: =00: motor 1 =01: motor 2	
		=10: motor 3 =11: motor 4	
		Bit2:=1 torque control prohibit	
		=0: torque control prohibit invalid	
	2009H	Bit3: =1 power consumption clear	W
		=0: no power consumption clear	
		Bit4: =1 pre-exciting =0: pre-exciting	
		prohibition	
		Bit5: =1 DC braking =0: DC braking	
		prohibition	
	200AH	Virtual input terminal command, range:	w
	200AH	0x000–0x1FF	
	200BH	Virtual input terminal command, range:	w
	2002.1	0x00-0x0F	
		Voltage setting value (special for V/F	
	200CH	separation)	W
		(0-1000, 1000 corresponds to the 100.0% of	

Function	Address	Dete meening in struction	R/W
instruction	truction definition Data meaning instruction		characteristics
		the rated voltage of the motor)	
	200DH	AO output setting 1	w
	200DH	(-1000–1000, 1000 corresponds to 100.0%)	vv
	200EH	AO output setting 2	w
	200EH	(-1000-1000, 1000 corresponds to 100.0%)	vv
		0001H: forward running	
		0002H: forward running	
SW 1 of the	2100H	0003H: stop	R
inverter	2100H	0004H: fault	
		0005H: POFF state	
		0006H: pre-exciting state	
		Bit0: =0: bus voltage is not established =1:	
		bus voltage is established	
		Bit1-2: =00: motor 1 =01: motor 2	
		=10: motor 3 =11: motor 4	
0000		Bit3: =0: asynchronous motor	
SW 1 of the	2101H	=1: synchronous motor	R
inverter		Bit4: =0: pre-alarm without overload	
		=1: overload pre-alarm	
		Bit5 - Bit6: =00: keypad control	
		=01: terminal control	
		=10: communication control	
Fault code of the inverter	2102H	See the fault type instruction	R
Identifying code of			
the inverter	2103H	GD200x0106	R
Setting frequency	3001H		R
Bus voltage	3002H		R
Output voltage	3003H		R
Output current	3004H		R
Operation speed	3005H	Compatible with GD series, CHF100A and	R
Output power	3006H	CHV100	R
Output torque	3007H	Compatible with GD series, CHF100A and	R
PID setting	3008H	CHV100	R
PID feedback	3009H		R
Input IO state	300AH		R
Output IO state	300BH		R
Al 1	300CH		R
/ 11 /	000011		i v

Function instruction	Address definition	Data meaning instruction	R/W characteristics
AI 2	300DH		
Reserved	300EH		
Reserved	300FH		
Reserved	3010H		
Reserved	3011H		
Reserved	3012H		
Reserved	3013H		
External counting value	3014H		
Torque setting	3015H		
Inverter code	3016H		
Fault code	5000H		
Setting frequency	3001H		R
Bus voltage	3002H		R

R/W characteristics means the function is with read and write characteristics. For example, "communication control command" is writing chrematistics and control the inverter with writing command (06H). R characteristic can only read other than write and W characteristic can only write other than read.

Note: when operating on the inverter with the table above, it is necessary to enable some parameters. For example, the operation of running and stopping, it is necessary to set P00.01 to communication running command channel and set P00.02 to MODBUS communication channel. And when operate on "PID given", it is necessary to set P09.00 to "MODBUS communication setting".

Code high 8bit	Meaning	Code low 8 position	Meaning
01	Goodrive	06	Goodrive20-UL Vector Inverter

The encoding rules for device codes (corresponds to identifying code 2103H of the inverter)

Note: The code consists of 16 bits which is high 8 bits and low 8 bits. High 8 bits mean the motor type series and low 8 bits mean the derived motor types of the series. For example, 0110H means Goodrive20-UL vector inverters.

7.3.6 Fieldbus ratio values

The communication data is expressed by hex in actual application and there is no radix point in hex. For example, 50.12Hz cannot be expressed by hex so 50.12 can be magnified by 100 times into 5012, so hex 1394H can be used to express 50.12.

A non-integer can be timed by a multiple to get an integer and the integer can be called fieldbus ratio values.

The fieldbus ratio values are referred to the radix point of the setting range or default value in the function parameter list. If there are figures behind the radix point (n=1), then the fieldbus ratio value m is 10° . Take the table as the example:

Function code	Name	Description	Setting range	Default value	Modify	Serial No.
P01.20	Hibernation restore delay time	0.0 - 3600.0s (valid when P01.19=2)	0.0 - 3600.0	0.0s	0	39.
P01.21	Restart after power off	0: Disable 1: Enable	0 - 1	0	0	40.

If there is one figure behind the radix point in the setting range or the default value, then the fieldbus ratio value is 10. if the data received by the upper monitor is 50, then the "hibernation restore delay time" is $5.0(5.0=50\div10)$.

If Modbus communication is used to control the hibernation restore delay time as 5.0s. Firstly, 5.0 can be magnified by 10 times to integer 50 (32H) and then this data can be sent.

> Inverter address

Rea

06

Ы address command

Parameters Data number

CRC check

After the inverter receives the command, it will change 50 into 5 according to the fieldbus ratio value and then set the hibernation restore delay time as 5s.

Another example, after the upper monitor sends the command of reading the parameter of hibernation restore delay time ,if the response message of the inverter is as following:

address

2-bvte data

Parameters data

Because the parameter data is 0032H (50) and 50 divided by 10 is 5, then the hibernation restore delay time is 5s.

7.3.7 Fault message response

There may be fault in the communication control. For example, some parameter can only be read. If a writing message is sent, the inverter will return a fault response message.

The fault message is from the inverter to the master, its code and meaning is as below:

Code	Name	Meaning
01H	Illegal command	The command from master cannot be executed. The reason maybe: 1. This command is only for new version and this version cannot realize. 2. Slave is in fault state and cannot execute it.
02H	Illegal data address.	Some of the operation addresses are invalid or not allowed to access. Especially the combination of the register and the transmitting bytes are invalid.
03H	Illegal value	When there are invalid data in the message framed received by

Code	Name	Meaning
		slave. Note: This error code does not indicate the data value to write exceed the range, but indicate the message frame is an illegal frame.
04H	Operation failed	The parameter setting in parameter writing is invalid. For example, the function input terminal cannot be set repeatedly.
05H	Password error	The password written to the password check address is not same as the password set by P7.00.
06H	Data frame error	In the frame message sent by the upper monitor, the length of the digital frame is incorrect or the counting of CRC check bit in RTU is different from the lower monitor.
07H	Written not allowed.	It only happen in write command, the reason maybe: 1. The written data exceeds the parameter range. 2. The parameter should not be modified now. 3. The terminal has already been used.
08H	The parameter cannot be modified during running	The modified parameter in the writing of the upper monitor cannot be modified during running.
09H	Password protection	When the upper monitor is writing or reading and the user password is set without password unlocking, it will report that the system is locked.

The slave uses functional code fields and fault addresses to indicate it is a normal response or some error occurs (named as objection response). For normal responses, the slave shows corresponding function codes, digital address or sub-function codes as the response. For objection responses, the slave returns a code which equals the normal code, but the first byte is logic 1.

For example: when the master sends a message to the slave, requiring it to read a group of address data of the inverter function codes, there will be following function codes:

0 0 0 0 0 0 1 1 (Hex 03H)

For normal responses, the slave responds the same codes, while for objection responses, it will return:


1000011 (Hex 83H)

Besides the function codes modification for the objection fault, the slave will respond a byte of abnormal code which defines the error reason.

When the master receives the response for the objection, in a typical processing, it will send the message again or modify the corresponding order.

For example, set the "running command channel" of the inverter (P00.01, parameter address is 0001H) with the address of 01H to 03, the command is as following:

Abnormal response code 86H means the abnormal response to writing command 06H; the fault code is 04H. In the table above, its name is operation failed and its meaning is that the parameter setting in parameter writing is invalid. For example, the function input terminal cannot be set repeatedly.

7.3.8 Example of writing and reading

Refer to section 7.4.1 and 7.4.2 for the command format.

7.3.8.1 Example of reading command 03H

Read the state word 1 of the inverter with the address of 01H (refer to table 1). From the table 1, the parameter address of the state word 1 of the inverter is 2100H.

The command sent to the inverter:

	<u>01</u>	<u>03</u>	<u>21 00</u>	<u>00 01</u>	<u>8E 36</u>
	Inverter address	Read command	Parameters address	Data number	CRC check
If the resp	onse messag	e is as below:			
	<u>01</u>	<u>03</u>	<u>02</u>	<u>00 03</u>	<u>F8 45</u>
	Inverter address	Read command	Data number	Data content	CRC check

The data content is 0003H. From the table 1, the inverter stops.

Watch "the current fault type" to "the previous 5 times fault type" of the inverter through commands, the corresponding function code is P07.27-P07.32 and corresponding parameter address is 071BH -0720H (there are 6 from 071BH).

The command sent to the inverter:

03	

<u>03</u>	
Read	
common	

07 1B Start

00	06

Inverter address

Read	
ommand	

address

6	parameters	in

CRC check total

If the response message is as below:

03	03	0C	00 23	00 23	00 23	00 23	00 23	00 23 !	5F D2
Inverter	Read	Byte	Type of	Type of		Type of last	Type of last	Type of last	CRC check

See from the returned data, all fault types are 0023H (decimal 35) with the meaning of maladjustment (STo).

7.3.8.2 Example of writing command 06H

Make the inverter with the address of 03H to run forward. See table 1, the address of "communication control command" is 2000H and forward running is 0001. See the table below.

Function	Address	Data meaning instruction	R/W characteristics
Communication control command =		0001Br forward running . 0002H: reverse running . 0003H: forward jogging . 0004H: reverse jogging . 0006H: top . 0006H: top . 0006H: tog . 0006H: tog . 0006H: tog . 0006H: tog . 0006H: jogging stop . 0006H: pogging stop .	W-

The command sent by the master:

<u>03</u>	<u>06</u>	<u>20 00</u>	<u>00 01</u>	<u>42 28</u>
Inverter address	Write command	Parameters address	Forward running	CRC check

If the operation is successful, the response may be as below (the same with the command sent by the master):

> Inverter address

Write

20 00 Parameters address

00 01 Forward runnina

42 28

command

CRC check

Set the Max. Output frequency of the inverter with the address of 03H to 100Hz.

Function code	Name	Description	Setting range	Default value	Modify	Serial No.
P00.03	Max. output frequency	P00.04 - 600.00 Hz (400.00 Hz)	10.00 - 600.00	50.00 H	2 0	3.

See the figures behind the radix point, the fieldbus ratio value of the Max. output frequency (P00.03) is 100, 100Hz timed by 100 is 10000 and the corresponding hex is 2710H.

The command sent by the master:

ĥ

27 10

62 14

Inverter address

Parameters address

Forward running

CRC check

If the operation is successful, the response may be as below (the same with the command sent by the master):

Inverter address

27 10 Forward running 62 14 CRC check

Note: the blank in the above command is for illustration. The blank cannot be added in the actual application unless the upper monitor can remove the blank by themselves.

7.3.8.3 Example of continous writing command10H

Example 1: make the inverter whose address is 01H run forward at 10Hz. Refer to the instruction of 2000H and 0001. Set the address of "communication setting frequency" is 2001H and 10Hz corresponds to 03E8H. See the table below.

Function instruction	Address definition	Data meaning instruction	R/W characteristics
		0001H: forward running	
		0002H: reverse running	
		0003H: forward jogging	
Communication	2000H	0004H: reverse jogging	W/R
control command	2000	0005H: stop	W/K
		0006H: coast to stop (emergency stop)	
		0007H: fault reset	
		0008H: jogging stop	
The address of	2001H	Communication setting frequency (0–Fmax (unit: 0.01Hz))	W/R
communication setting	2002H	PID given, range (0–1000, 1000 corresponds to100.0%)	vv/R

Set P00.01 to 2 and P00.06 to 8.

The command sent to the inverter: <u>م</u>

<u>01</u>	
Inverter	
address	

10 20 00 Continuous writina

Parameters

00 02 04 Data number

<u>00 01</u>	<u>03 E8</u>
Forward	10Hz
running	

3B 10

command

address

Byte number

CRC check

If the response message is as below:

01

Inverter

address

10 20 00 Continuous Parameters

writing

command

00 02 Data

CRC check

4A 08

number

address Example 2: set the ACC time of 01H inverter as 10s and the DEC time as 20s

P00.11	ACC time 1	ACC time means the time needed if the inverter speeds up from 0Hz to the Max. One (P00.03). DEC time means the time needed if the inverter speeds	Depend on model	0		
P00.12	DEC time 1	down from the Max. Output frequency to 0Hz (P00.03). Goodrive300 series inverters define four groups of ACC/DEC time which can be selected by P05. The factory default ACC/DEC time of the inverter is the first group. Setting range of P00.11 and P00.12: 0.0–3600.0s	Depend on model	0		

The corresponding address of P00.11 is 000B, the ACC time of 10s corresponds to 0064H, and the DEC time of 20s corresponds to 00C8H.

The command sent to the inverter:

Goodrive20-I	JL inverters					Comm	unication Protoc
<u>01</u>	<u>10</u>	00 0B	00 02	04	00 64	00 C8	F2 55
Inverter address	Continuous writing command	Parameters address	Data number	Byte number	10s	20s	CRC check
f the respon	se message	is as below:					
	<u>01</u>	<u>10</u>	<u>00 0B</u>	00	<u>02</u> 3	<u>A0 08</u>	
	Invert addre			s Da num		CRC check	

command

number

Note: The space between above commands is for instruction and there is no space between the commands during actual applications.

Common communication fault

Common communication faults: no response to the communication or the inverter returns abnormal fault.

The possible reason for no response to the communication:

Selecting wrong serial interface, for example, if the converter is COM1, selecting COM2 during the communication

The baud rate, digital bit, end bit and check bit are not the same with the inverter + and - of RS485 are connected in reverse.

The 485 wire cap on the terminal board of the inverter is not plug in. the wire cap in behind the terminal arrangement.

Appendix A Technical Data

A.1 Ratings

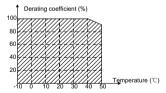
A.1.1 Capacity

Inverter sizing is based on the rated motor current and power. To achieve the rated motor power given in the table, the rated current of the inverter must be higher than or equal to the rated motor current. Also the rated power of the inverter must be higher than or equal to the rated motor power. The power ratings are the same regardless of the supply voltage within one voltage range.

Note:

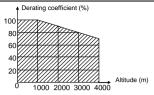
 The maximum allowed motor shaft power is limited to 1.5 x PN. If the limit is exceeded, motor torque and current are automatically restricted. The function protects the input bridge of the inverter against overload.

2. The ratings apply at ambient temperature of 40°C.


3. It is important to check that in common DC systems the power flowing through the common DC connection does not exceed PN.

A.1.2 Derating

The load capacity decreases if the installation site ambient temperature exceeds 40°C, the altitude exceeds 1000 meters or the switching frequency is changed from 4 kHz to 8, 12 or 15 kHz.


A.1.2.1 Temperature derating

In the temperature range of +40°C to +50°C, the rated output current is decreased by 1% for every additional 1°C. Refer to the below list for the actual derating.

A.1.2.2 Altitude derating

The device can output rated power if the installation site below 1000m. The output power decreases if the altitude exceeds 1000 meters. Below is the detailed decreasing range of the derating:

A.2 Marking

A.2.1 CE marking

The CE mark is attached to the inverter to verify that the inverter follows the provisions of the European Low Voltage (2006/95/EC) and EMC Directives (2004/108/EC).

A.2.2 UL and CUL marking

The UL and CUL marks are attached to the inverter to verify that the inverter follows the provisions of the UL508C and C22.2 No. 274-13.

A.2.3 Compliance with the European EMC Directive

The EMC Directive defines the requirements for immunity and emissions of electrical equipment used within the European Union. The EMC product standard (EN 61800-3:2004) covers requirements stated for inverters. See section *EMC regulations*

A.3 EMC regulations

EMC product standard (EN 61800-3:2004) contains the EMC requirements to the inverter.

First environment: domestic environment (includes establishments connected to a low-voltage network which supplies buildings used for domestic purposes).

Second environment includes establishments connected to a network not directly supplying domestic premises.

Four categories of the inverter:

Inverter of category C1: inverter of rated voltage less than 1000 V and used in the first environment.

Inverter of category C2: inverter of rated voltage less than 1000 V other than pins, sockets and motion devices and intended to be installed and commissioned only by a professional electrician when used in the first environment.

Note: IEC/EN 61800-3 in EMC standard doesn't limit the power distribution of the inverter, but it defines the upstage, installation and commission. The professional electrician has necessary skills in installing and/or commissioning power drive systems, including their EMC aspects.

Inverter of category C3: inverter of rated voltage less than 1000 V and used in the second environment other than the first one

Inverter of category C4: inverter of rated voltage more than 1000 V or the nominal current is above or equal to 400A and used in the complicated system in second environment.

A.3.1 Category C2

The emission limits are complied with the following provisions:

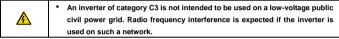
 The optional EMC filter is selected according to the options and installed as specified in the EMC filter manual.

2. The motor and control cables are selected as specified in this manual.

3. The inverter is installed according to the instructions given in this manual.

	• In a domestic environment, this product may cause radio inference, in which
<u> </u>	case supplementary mitigation measures may be required.

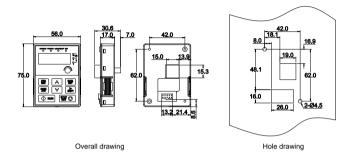
A.3.2 Category C3

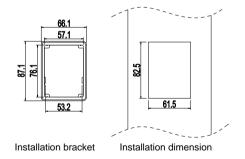

The immunity performance of the inverter complies with the demands of IEC/EN 61800-3, second environment.

The emission limits are complied with the following provisions:

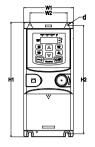
1. The optional EMC filter is selected according to the options and installed as specified in the EMC filter manual.

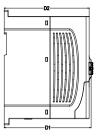
2. The motor and control cables are selected as specified in this manual.


3. The inverter is installed according to the instructions given in this manual.

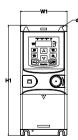

Appendix B Dimension Drawings

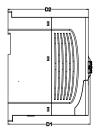
Dimension drawings of the Goodrive20-UL are shown below. The dimensions are given in millimeters and inches.

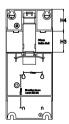

B.1 External keypad (optional) structure



The external keypad can be mounted on the installation bracket and the bracket is optional.


B.2 Inverter chart





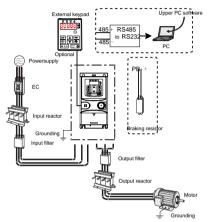
Wall mounting (unit: mm)

Model	W1	W2	H1	H2	D1	D2	Installation hole (d)
GD20-0R4G-S2-UL	80.0	60.0	160.0	150.0	123.5	120.3	5
GD20-0R7G-S2-UL	80.0	60.0	160.0	150.0	123.5	120.3	5
GD20-1R5G-S2-UL	80.0	60.0	185.0	175.0	140.5	137.3	5
GD20-2R2G-S2-UL	80.0	60.0	185.0	175.0	140.5	137.3	5
GD20-0R4G-2-UL	80.0	60.0	185.0	175.0	140.5	137.3	5
GD20-0R7G-2-UL	80.0	60.0	185.0	175.0	140.5	137.3	5
GD20-0R7G-4-UL	80.0	60.0	185.0	175.0	140.5	137.3	5
GD20-1R5G-4-UL	80.0	60.0	185.0	175.0	140.5	137.3	5
GD20-2R2G-4-UL	80.0	60.0	185.0	175.0	140.5	137.3	5

Rail mounting (unit: mm)

Goodrive20-UL inverters

Appendix B Dimension Drawings


Model	W1	H1	H3	H4	D1	D2	Installation hole (d)
GD20-0R4G-S2-UL	80.0	160.0	35.4	36.6	123.5	120.3	5
GD20-0R7G-S2-UL	80.0	160.0	35.4	36.6	123.5	120.3	5
GD20-1R5G-S2-UL	80.0	185.0	35.4	36.6	140.5	137.3	5
GD20-2R2G-S2-UL	80.0	185.0	35.4	36.6	140.5	137.3	5
GD20-0R4G-2-UL	80.0	185.0	35.4	36.6	140.5	137.3	5
GD20-0R7G-2-UL	80.0	185.0	35.4	36.6	140.5	137.3	5
GD20-0R7G-4-UL	80.0	185.0	35.4	36.6	140.5	137.3	5
GD20-1R5G-4-UL	80.0	185.0	35.4	36.6	140.5	137.3	5
GD20-2R2G-4-UL	80.0	185.0	35.4	36.6	140.5	137.3	5

Appendix C Peripheral Options and Parts

This chapter describes how to select the options and parts of Goodrive20-UL series.

C.1 Peripheral wiring

Below is the peripheral wiring of Goodrive20-UL series inverters.

Pictures	Name	Descriptions
	External keypad	Including the external keypads with and without the function of parameter copying. When the external keypad with the function of parameter copying is valid, the local keypad is off; when the external keypad without the function of parameter copying is valid, the local and external keypads are on at the same time.
	Cables	Device to transfer the electronic signals

Appendix C Peripheral Options and Parts

Pictures	Name	Descriptions
	Breaker	Prevent from electric shock and protect the power supply and the cables system from overcurrent when short circuits occur. (Please select the breaker with the function of reducing high order harmonic and the rated sensitive current to 1 inverter should be above 30mA).
I	Input reactor	This device is used to improve the power factor of the input side of the inverter and control the higher harmonic current.
	Input filter	Control the electromagnetic interference generated from the inverter, please install close to the input terminal side of the inverter.
Ĵ	Braking resistors	Shorten the DEC time. Only braking resistors are needed for Goodrive20-UL inverters.
	Output filter	Control the interference from the output side of the inverter and please install close to the output terminals of the inverter.
	Output reactor	Prolong the effective transmitting distance of the inverter to control the sudden high voltage when switching on/off the IGBT of the inverter.
	Membrane of heat releasing holes at the side	Apply to severe environment and improve protective effect. Derate 10% of the machine.

C.2 Power supply

٠

A
<u> 71</u>

Check that the voltage degree of the inverter complies with the voltage of the supply power voltage.

C.3 Cables

C.3.1 Power cablesDimension the input power and motor cables according to local regulations. Use 75°C CU wire only.

Note: A separate PE conductor is required if the conductivity of the cable shield is not sufficient for the purpose.

Required wire torque, type and range for field input and output terminals listed below:

Goodrive20-UL inverters

Model No.	Terminal Type	Required Torque (in-lbs)	Wire Range	Wire Connector (##)
GD20-0R4G-S2-UL	Input and Output	4.4 or 8.8 @@	14 AWG	Optional
GD20-0R7G-S2-UL	Terminal	4.4 01 8.8 @@	14 AWG	Optional
GD20-1R5G-S2-UL	Input and Output Terminal	4.4 or 8.8 @@	12 AWG	Required
GD20-2R2G-S2-UL	Input and Output Terminal	4.4@@	12 AWG	Required
GD20-0R4G-2-UL				
GD20-0R7G-2-UL	land and Output			
GD20-0R7G-4-UL	Input and Output Terminal	7	14 AWG	Optional
GD20-1R5G-4-UL	Terminar			
GD20-2R2G-4-UL				
All models	Control Terminal Block	4.5	26-14 (Str/Sol) AWG	Optional

@@: See marking on product for tightening torque detail.

##: UL listed wire connector shall be used.

The models GD20-0R4G-S2-UL/GD20-0R7G-S2-UL/GD20-1R5G-S2-UL use terminal blocks of ANYTEK and DEGSON, and the tightening torque must be 8.8 in-lb (ANYTEK) and 4.4 in-lb (DEGSON) or equivalent.

The model GD20-2R2G-S2-UL uses terminal blocks of DEGSON, and the tightening torque must be 4.4 in-lb or equivalent.

The models GD20-0R4G-2-UL/GD20-0R7G-2-UL/GD20-0R7G-4-UL/GD20-1R5G-4-UL/GD20-2R2G-4-UL use terminal blocks of SUCCEED, and the tightening torque must be 7 in-lb or equivalent.

Tightening torque and wire range for field grounding wiring terminals are marked adjacent to the terminal or on the wiring diagram.

Model No.	Required Torque (in-lbs)	Wire Range (AWG)
GD20-0R4G-S2-UL	10	14
GD20-0R7G-S2-UL	10	12
GD20-1R5G-S2-UL	10	12
GD20-2R2G-S2-UL	10	10
GD20-0R4G-2-UL		
GD20-0R7G-2-UL		
GD20-0R7G-4-UL	10	14
GD20-1R5G-4-UL		
GD20-2R2G-4-UL		

C.3.2 Control cables

All analog control cables and the cable used for the frequency input must be shielded.

The relay cable needs the cable type with braided metallic screen.

Note: Run analog and digital signals in separate cables.

C.4 Fuse

It is necessary to add fuse for the avoidance of overload.

It is appropriate to use a breaker (MCCB) which complies with the inverter power in the 3-phase AC power and input power and terminals. The capacity of the inverter should be 1.5-2 times of the rated current.

 Due to the inherent operating principle and construction of circuit breakers, independent of the manufacturer, hot ionized gases may escape from the breaker enclosure in case of a short-circuit. To ensure safe use, special attention must be paid to the installation and placement of the breakers. Follow the manufacturer's instructions.

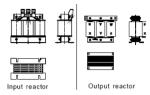
It is necessary to install the electromagnetic contactor in the input side to control the switching on and off safety of the main circuit. It can switch off the input power supply when system faults.

For single phase: "Suitable for use on a circuit capable of delivering not more than 5000 rms symmetrical amperes, 250 volts maximum when protected by fuse, see following table for fuse information." or equivalent.

Power Conversion Model Series	Fuse Class Type	Fuse Current Rating
GD20-0R4G-S2-UL	CC	10 A/ 600 V
GD20-0R7G-S2-UL	CC	20 A/ 600 V
GD20-1R5G-S2-UL	CC	20 A/ 600 V
GD20-2R2G-S2-UL	CC	30A/ 600 V
GD20-0R4G-2-UL	CC	10A/ 600 V
GD20-0R7G-2-UL	CC	20A/ 600 V

For 3-phase: "Suitable for use on a circuit capable of delivering not more than 5000 rms symmetrical amperes, 600 volts maximum when protected by fuse, see following table for fuse information." or equivalent.

Power Conversion Model Series	Fuse Class Type	Fuse Current Rating
GD20-0R7G-4-UL	CC	10 A/ 600 V
GD20-1R5G-4-UL	CC	10 A/ 600 V
GD20-2R2G-4-UL	CC	20 A/ 600 V


Integral solid-state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes.

C.5 Reactors

High current in the input power circuit may cause damage to the rectifying components. It is appropriate

to use AC reactor in the input side for the avoidance of high-voltage input of the power supply and improvement of the power factors.

If the distance between the inverter and the motor is longer than 50m, frequent overcurrent protection may occur to the inverter because of high leakage current caused by parasitic capacitance effects from the long cables to the ground. In order to avoid the damage of the motor insulation, it is necessary to add reactor compensation.

Model	Input reactor	Output reactor	
GD20-0R4G-S2-UL			
GD20-0R7G-S2-UL	1	/	
GD20-1R5G-S2-UL	7		
GD20-2R2G-S2-UL			
GD20-0R4G-2-UL			
GD20-0R7G-2-UL	ACL2-1R5-4-UL	OCL2-1R5-4-UL	
GD20-0R7G-4-UL	ACLZ-TR5-4-UL		
GD20-1R5G-4-UL			
GD20-2R2G-4-UL	ACL2-2R2-4-UL	OCL2-2R2-4-UL	

Note:

- The rated derate voltage of the input reactor is 2%±15%.
- · The power factor of the input side is above 90% after adding DC reactor.
- The rated derate voltage of the output reactor is 1%±15%.
- Above options are external, the customer should indicate when purchasing.

C.6 Filter

C.6.1 C3 Filter type instruction

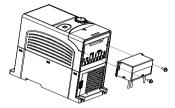
Character designation	Detailed instruction
A	FLT: inverter filter series
D.	Filter type
В	P: power supply filter L: output filter
	Voltage degree
С	S2: AC 1PH 220V–240V
	04: AC 3PH 380V-480V
D	3-digit development serial number. For example, 003 stands for the serial
D	number of C3 filters in development
	Installation type
E	L: Common type
	H: High performance type
	Utilization environment of the filters
F	A: the first environment (IEC61800-3:2004) category C1 (EN 61800-3:2004)
Г	B: the first environment (IEC61800-3:2004) category C2 (EN 61800-3:2004)
	C: the second environment (IEC61800-3:2004) category C3 (EN 61800-3:2004)
G	Lot No.
6	G: Special for external C3 filter

C.6.2 C3 filter

C3 filers are optional for Goodrive20-UL series inverters.

The input interference filter can decrease the interference of the inverter to the surrounding equipments. Output interference filter can decrease the radio noise cause by the cables between the inverter and the motor and the leakage current of the conducting wires.

Our company configured some filters for the convenient of the users.


Model	Input filter
GD20-0R4G-S2-UL	
GD20-0R7G-S2-UL	FLT-PS2004L-C-G
GD20-1R5G-S2-UL	FLI-PS2004L-C-G
GD20-2R2G-S2-UL	
GD20-0R4G-2-UL	
GD20-0R7G-2-UL	
GD20-0R7G-4-UL	FLT-P04007L-C-G
GD20-1R5G-4-UL	
GD20-2R2G-4-UL	

Note:

- The input EMI meet the requirement of C3 after adding input filters.
- · Above options are external, the customer should indicate when purchasing.

• Do not connect C3 filters in IT power system.

C.6.3 Installation instruction for C3 filter

The installation procedures for C3 filter are as below:

1. Connect the filter cable to the corresponding input terminal of the inverter according to the label;

2. Fix the filter onto the inverter with M3 x 10 screws (as shown in above picture).

C.6.4 C2 Filter type instruction

$\frac{FLT}{A} - \frac{P04}{B} \frac{016L}{C} - \frac{B}{B}$

Character designation	Detailed instruction	
A	FLT: inverter filter series	
	Filter type	
В	P: power supply filter	
	L: output filter	
	Voltage degree	
С	S2: AC 1PH 220V–240V	
	04: AC 3PH 380V-480V	
D	3 bit rated current code "016" means 16A	
	Installation type	
E	L: Common type	
	H: High performance type	
	Utilization environment of the filters	
F	A: the first environment (IEC61800-3:2004) category C1 (EN 61800-3:2004)	
	B: the first environment (IEC61800-3:2004) category C2 (EN 61800-3:2004)	

C.6.5 C2 filter

Model	Input filter	Output filter
GD20-0R4G-S2-UL		
GD20-0R7G-S2-UL	FLT-PS2010H-B	FLT-L04006L-B
GD20-1R5G-S2-UL	FLT-PS2025L-B	FLT-L04016L-B

Goodrive20-UL inverters

Model	Input filter	Output filter
GD20-2R2G-S2-UL		
GD20-0R4G-2-UL		
GD20-0R7G-2-UL		
GD20-0R7G-4-UL	FLT-P04006L-B	FLT-L04006L-B
GD20-1R5G-4-UL		
GD20-2R2G-4-UL	FLT-P04016L-B	FLT-L04016L-B

Note:

- The input EMI meet the requirement of C2 after adding input filters.
- · Above options are external, the customer should indicate when purchasing.

C.7 Braking components

C.7.1 Select the braking components

It is appropriate to use braking resistor or braking unit when the motor brakes sharply or the motor is driven by a high inertia load. The motor will become a generator if its actual rotating speed is higher than the corresponding speed of the reference frequency. As a result, the inertial energy of the motor and load return to the inverter to charge the capacitors in the main DC circuit. When the voltage increases to the limit, damage may occur to the inverter. It is necessary to apply braking unit/resistor to avoid this accident happens.

	Only qualified electricians are allowed to design, install, commission and operate on the inverter.
	Follow the instructions in "warning" during working. Physical injury or death
	or serious property may occur.
	Only qualified electricians are allowed to wire. Damage to the inverter or
	braking options and part may occur. Read carefully the instructions of
	broking registers or units before connecting them with the inverter
	braking resistors or units before connecting them with the inverter.
	• Do not connect the braking resistor with other terminals except for PB and
	(-). Do not connect the braking unit with other terminals except for (+) and (-).
	Damage to the inverter or braking circuit or fire may occur.
•	Connect the braking resistor or braking unit with the inverter according to
	the diagram. Incorrect wiring may cause damage to the inverter or other
	devices.

Goodrive20-UL series inverters have internal braking units.

	Braking resistor at	The consumed power of the braking resistor			Min.	
Model	Type of braking unit	100% of the braking torque (Ω)	10% braking	50% braking	80% braking	braking resistor (Ω)
GD20-0R4G-S2-UL		361	0.06	0.30	0.48	42
GD20-0R7G-S2-UL		192	0.11	0.56	0.90	42
GD20-1R5G-S2-UL		96	0.23	1.10	1.80	30
GD20-2R2G-S2-UL	Internal braking	65	0.33	1.70	2.64	21
GD20-0R4G-2-UL	unit	361	0.06	0.3	0.48	131
GD20-0R7G-2-UL		192	0.11	0.56	0.90	93
GD20-0R7G-4-UL		653	0.11	0.56	0.90	240
GD20-1R5G-4-UL		326	0.23	1.13	1.80	170
GD20-2R2G-4-UL		222	0.33	1.65	2.64	130

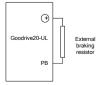
Note:

Select the resistor and power of the braking unit according to the data our company provided.

The braking resistor may increase the braking torque of the inverter. The resistor power in the above table is designed on 100% braking torque and 10% braking usage ratio. If the users need more braking torque, the braking resistor can decrease properly and the power needs to be magnified.

 Never use a brake resistor with a resistance below the minimum value specified for the particular inverter. The inverter and the internal chopper are not able to handle the overcurrent caused by the low resistance.
Increase the power of the braking resistor properly in the frequent braking
situation (the frequency usage ratio is more than 10%).

C.7.2 Placing the brake resistor


Use shielded cables for braking resistor cables.

Install all resistors in a place where they will cool.

The materials near the brake resistor must be non-flammable. The surface temperature of the resistor is high. Air flowing from the resistor is of hundreds of degrees Celsius. Protect the resistor against contact.

Only external braking resistor is needed in Goodrive20-UL.

Appendix D Further Information

D.1 Product and service inquirie

Address any inquiries about the product to your local INVT offices, quoting the type designation and serial number of the unit in question. A listing of INVT sales, support and service contacts can be found by navigating to <u>www.invt.com.cn</u>.

D.2 Feedback of INVT Inverters manuals

Your comments on our manuals are welcome. Go to <u>www.invt.com.cn</u>, directly contact online service personnel or choose **Contact Us** to obtain contact information.

E.1.3 Documents on the Internet

D.3 Document library on the Internet

You can find manuals and other product documents in PDF format on the Internet. Go to <u>www.invt.com.cn</u> and choose Service and Support > Date Download.

Service line:86-755-86312859

Website:www.invt.com

The products are owned by Shenzhen INVT Electric Co.,Ltd. Two companies are commissioned to manufacture: (For product code, refer to the 2nd/3rd place of S/N on the name plate.)

 Shenzhen INVT Electric Co., Ltd. (origin code: 01)
 INVT Power Electronics (Suzuchu) Co., Ltd. (origin code: 06)

 Address: INVT Guangming Technology Building, Songbai Road, Matian, Guangming District, Shenzhen, China
 Address: 1# Kunlun Mountain Road, Science&Technology Town, Gaoxin District, Suzhou, Jiangsu, China

INVT Copyright.

Information may be subject to change without notice during product improving.

201811 (V1.4)